• Title/Summary/Keyword: bridges management

Search Result 323, Processing Time 0.028 seconds

Wireless Bridge Health Monitoring System for Long-term Measurement of Small-sized Bridges (중소교량의 지리적 특성을 고려한 무선 전력 및 통신 기술 기반 교량 장기 계측시스템 구축 방안 연구)

  • Tae-Ho Kwon;Kyu-San Jung;Ki-Tae Park;Byeong-Cheol Kim;Jae-Hwan Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.86-93
    • /
    • 2023
  • A bridge health monitoring technology is under development for the safety management of aged bridges. The bridge health monitoring technology has been developed mainly for single bridge management at a large scale, so it uses wire-based systems for power supply and data transfer. However, the wire-based systems need to be improved for the sporadically distributed small-sized bridges on local roads. This study proposed a wireless structural health monitoring system for small-sized bridges. The proposed monitoring system overcomes the limitations of wired systems by providing wireless power through solar power and utilizing LTE technology to transmit measurement data. In addition, a remote control system and power management plan were proposed to ensure the stability of the bridge measurement system. The proposed measurement system was installed on 32 bridges on fields and verified the operability by collecting 80.6% of measurement data for one year. The proposed system can support the health monitoring of aged bridges on local roads.

Study on the Emergency Assessment about Seismic Safety of Cable-supported Bridges using the Comparison of Displacement due to Earthquake with Disaster Management Criteria (변위 비교를 통한 케이블지지교량의 긴급 지진 안전성 평가 방법의 고찰)

  • Park, Sung-Woo;Lee, Seung Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.114-122
    • /
    • 2018
  • This study presents the emergency assessment method about seismic safety of cable-supported bridges using seismic acceleration sensors installed on the primary structural elements of them. The structural models of bridges are updated iteratively to make their dynamic characteristics to be similar to those of real bridges based on the comparison of their natural frequencies with those of real bridges estimated from acceleration data measured at ordinary times by the seismic acceleration sensor. The displacement at the location of each seismic acceleration sensor is derived by seismic analysis using design earthquake, and the peak value of them is determined as the disaster management criteria in advance. The displacement time history is calculated by the double integration of the acceleration time history which is recorded at each seismic acceleration sensor and filtered by high cut(low pass) and low cut(high pass) filters. Finally, the seismic safety is evaluated by the comparison of the peak value in calculated displacement time history with the disaster management criteria determined in advance. The applicability of proposed methodology is verified by performing the seismic safety assessment of 12 cable-supported bridges using the acceleration data recorded during Gyeongju earthquake.

The Experimental Study for the Safety-factor Determination on Deflection Warning Criterion of Bridge Structure (교량의 처짐 관리기준치 여유도 산정을 위한 실험적 연구)

  • Joo, Bong-Chul;Park, Ki-Tae;Lee, Woo-Sang
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.473-476
    • /
    • 2008
  • Currently the number of bridge, large or small, throughout the nation reaches at least 20,000 which tend to increase year by year. Now some of the special bridges are professionally managed through the maintenance monitoring system and the number of bridges under the maintenance monitoring system will be increase. The deflection-measure of spans among the measuring items is important item for checking bridge-condition. This study made an investigation into the management reference and estimated the safety-factor of the management reference

  • PDF

Analysis of Federal Expenses to Restore, Repair, Reconstruct, or Replace Disaster Damaged Roads and Bridges in the U.S.

  • Bhattacharyya, Arkaprabha;Hastak, Makarand
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.929-936
    • /
    • 2022
  • In the U.S., the state, local, tribe, and territorial governments seek funding from the federal government through the Public Assistance program to carry out these recovery works. In this paper historic public assistance data between 1998 and 2021 have been analyzed to derive several insights such as: types of disasters causing the most damage, states requiring more support, net present value of the federal expense etc. This paper has found that the states requiring more support from the federal government are not always the states suffering the maximum losses from the disasters. It has also found that the net present value of the federal expense between 1998 and 2020 to restore, repair, reconstruct, or replace disaster damaged roads and bridges across the U.S. is $15 billion in 2021 values. Moreover, this paper has tested the correlation between the states' public assistance funds requirements and the existing condition and performance of roads and bridges as revealed by the American Society of Civil Engineer's infrastructure grade card. It has found a weak correlation between these two. The outcomes of this paper can be used by the decision makers to analyze the viability of any possible alternative to the exiting public assistance program. The insights can also help in better decision making in pre-disaster preparation and post-disaster funds allocation.

  • PDF

Development of Real-time Bridge Inspection Application connected with Bridge Management System (교량관리시스템과 연계된 실시간 교량 현장조사 프로그램 개발)

  • Park, Kyung-Hoon;Sun, Jong-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7893-7901
    • /
    • 2015
  • It is important to the periodic collection and analysis of the maintenance and management information of bridges for a more safe and efficient management of the bridges. To enhance the reliability and ease of acquisition of the bridge inspection information that is the basis for a strategy for safe and economic management using the bridge management system (BMS), this study develops a smart phone application for bridge inspection and ensures the actual applicability of the application. The developed application that is linked with the BMS for life-cycle management of bridges is possible to real-time query, modify and transmit of the maintenance-related information, and the application is able to greatly relieve the time and cost for the bridge inspection through the automatic creation of site inspection reports. The proposed method using the application is directly or indirectly expected to be very high effects of value improvement, such as ease of use, improved accuracy, sustainability of information, and future utilization, compared to conventional inspection method.

Development of a 3D Model-Based Demonstration DB System for Efficient Management and Utilization of Inspection and Diagnosis Data of Small and Medium-Sized Bridges (중소규모 교량의 점검·진단 데이터 효율적 관리 및 활용을 위한 3D 모델 기반 실증 DB시스템 개발)

  • Park, Se-Hyun;Jung, Dae-Sung;Seo, Jin-Sook;Kim, Tae-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.1-11
    • /
    • 2021
  • As the aging of large domestic SOC facilities accelerates, facility maintenance is also changing from safety evaluation based on the current condition to performance-oriented preventive and preemptive maintenance based on the prediction of the level of future obsolescence. In particular, in the case of bridges, class 1 and 2 bridges are systematically managed along with many studies, but for small and medium-sized class 3 bridges there is no collection and utilization of historical data presenting performance degradation during their service life. Therefore, in this study, 3D model-based demonstration DB system was designed and developed to intuitively check the damage change rate at the damage location by registering the maintenance history by life cycle for each member's exterior damage in the 3D bridge object and to enable API-based comprehensive performance evaluation.

Quantitative Deterioration and Maintenance Profiles of Typical Steel Bridges based on Response Surface Method (응답면 기법을 이용한 강교의 열화 및 보수보강 정량화 이력 모델)

  • Park, Seung-Hyun;Park, Kyung Hoon;Kim, Hee Joong;Kong, Jung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.765-778
    • /
    • 2008
  • Performance Profiles are essential to predict the performance variation over time for the bridge management system (BMS) based on risk management. In general, condition profiles based on experts opinion and/or visual inspection records have been used widely because obtaining profiles based on real performance is not easy. However, those condition profiles usually don't give a good consistency to the safety of bridges, causing practical problems for the effective bridge management. The accuracy of performance evaluation is directly related to the accuracy of BMS. The reliability of the evaluation is important to produce the optimal solution for distributing maintenance budget reasonably. However, conventional methods of bridge assessment are not suitable for a more sophisticated decision making procedure. In this study, a method to compute quantitative performance profiles has been proposed to overcome the limitations of those conventional models. In Bridge Management Systems, the main role of performance profiles is to compute and predict the performance of bridges subject to lifetime activities with uncertainty. Therefore, the computation time for obtaining an optimal maintenance scenario is closely related to the efficiency of the performance profile. In this study, the Response Surface Method (RSM) based on independent and important design variables is developed for the rapid computation. Steel box bridges have been investigated because the number of independent design variables can be reduced significantly due to the high dependency between design variables.

Japan's experience on long-span bridges monitoring

  • Fujino, Yozo;Siringoringo, Dionysius M.;Abe, Masato
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.233-257
    • /
    • 2016
  • This paper provides an overview on development of long-span bridges monitoring in Japan, with emphasis on monitoring strategies, types of monitoring system, and effective utilization of monitoring data. Because of severe environment condition such as high seismic activity and strong wind, bridge monitoring systems in Japan historically put more emphasis on structural evaluation against extreme events. Monitoring data were used to verify design assumptions, update specifications, and facilitate the efficacy of vibration control system. These were among the first objectives of instrumentation of long-span bridges in a framework of monitoring system in Japan. Later, monitoring systems were also utilized to evaluate structural performance under various environment and loading conditions, and to detect the possible structural deterioration over the age of structures. Monitoring systems are also employed as the basis of investigation and decision making for structural repair and/or retrofit when required. More recent interest has been to further extend application of monitoring to facilitate operation and maintenance, through rationalization of risk and asset management by utilizing monitoring data. The paper describes strategies and several examples of monitoring system and lessons learned from structural monitoring of long-span bridges in Japan.

Research and practice of health monitoring for long-span bridges in the mainland of China

  • Li, Hui;Ou, Jinping;Zhang, Xigang;Pei, Minshan;Li, Na
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.555-576
    • /
    • 2015
  • The large number of long-span bridges constructed in China motivates the applications of structural health monitoring (SHM) technology. Many bridges have been equipped with sophisticated SHM systems in the mainland of China and in Hong Kong of China. Recently, SHM technology has been extended to field test systems. In this view, SHM can serve as a tool to develop the methods of life-cycle performance design, evaluation, maintenance and management of bridges; to develop new structural analysis methods through validation and feedback from SHM results; and to understand the behavior of bridges under natural and man-made disasters, rapidly assess the damage and loss of structures over large regions after disasters, e.g., earthquake, typhoon, flood, etc. It is hoped that combining analytical methods, numerical simulation, small-scale tests and accelerated durability tests with SHM could become the main engine driving the development of bridge engineering. This paper demonstrates the above viewpoint.