• Title/Summary/Keyword: bridges construction

Search Result 1,072, Processing Time 0.026 seconds

Cost optimization of segmental precast concrete bridges superstructure using genetic algorithm

  • Ghiamat, R.;Madhkhan, M.;Bakhshpoori, T.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.503-512
    • /
    • 2019
  • The construction of segmental precast concrete bridge is an increase due to its superior performance and economic advantages. This type of bridge is appropriate for spans within 30 to 150 m (100 to 500 ft), known as mega-projects and the design optimization would lead to considerable economic benefits. A box-girder cross section superstructure of balanced cantilever construction method is assessed here. The depth of cross section, (variable along the span linearly), bottom flange thickness, and the count of strands are considered as design variables. The optimum design is characterized by geometry, serviceability, ductility, and ultimate limit states specified by AASHTO. Genetic algorithm (GA) is applied in two fronts: as to the saving in construction cost 8% and as to concrete volume 6%. The sensitivity analysis is run by considering different parameters like span/depth ratio, relation between superstructure cost, span length and concrete compressive strength.

Analysis of Animal Usage of Eco-bridge and Ecoduct Using an Infrared CCTV at the Baekdudaegan Mountain Range, Korea (적외선 CCTV를 활용한 백두대간 육교형 생태통로와 터널형 생태통로의 동물이용현황 분석)

  • Cho, Hye-Jin
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.3
    • /
    • pp.177-181
    • /
    • 2016
  • In order to prevent the fragmentation of animal habitat due to road construction, the most widely applied solution is building animal passes worldwide. In Korea, animal passes were introduced in the early 2000s, and through trial and error, the national guidelines for them and their design standards were published in 2010. These were criticized by politicians because of their relative inefficiency considering their high construction cost and their lack of animal usage. This study investigated the extent to which animals used the facilities. For this study, two types of animal passes, eco-bridges and ecoducts, were considered and the test sites were chosen from the Baekdu Mountains. The animal usage data was captured using infra-red CCTV cameras. The results showed that various types of animals used eco-bridges and ecoducts. Interestingly various types of birds were captured by cameras and endangered animals were also in them. The season, weather, and their surrounded vegetation also had effects on their usages. The infrared CCTV allowed detailed captures of animals but the electricity shortage was one disadvantage. During the last decades, a number of eco-bridges were constructed throughout the country and now we need to focus on their monitoring and maintenance for their successful efficiency and application.

Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges (프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가)

  • Shim, Chang Su;Jeon, Seung Min;Kim, Dong Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.333-345
    • /
    • 2008
  • concrete deck bridges are increasingly aplied to twin- girder bridges and open-stel box girder bridges.One of the most dificult isues in the design of shear conect ors is the mater of achieving ful composite action. Many connectors in smal area require a significant section los of precast decks resulting in difficult reinforcement details. In this closer spacing than the required minimum spacing in the design codes was evaluated through static tests. Test results s howed that the ultimate strength decreased as the conector spacing was reduced. The strength enhancement was observed due to aditional reinforcement for precast slabs or for shear pockets. Thus, the design of group stud shear connection needs to anticipate failure modes and the conector failure should be induced. Based on the test results, an empirical equation consi dering stud spacing was proposed to evaluate the ultimate strength of group stud shear conection. Fatigue tests showed n o reduction in fatigue life of the group stud shear conection in the range of this research. Details of the precast decks wer e enhanced using the findings of the study.

Free Vibration Analysis of Horizontally Curved I-Girder Bridges using the Finite Element Method (유한요소법을 이용한 수평곡선 I형교의 자유진동해석)

  • Yoon, Ki Yong;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.47-61
    • /
    • 1998
  • The behavior of horizontally curved I-girder bridges is complex because the flexural and torsional behavior of curved girders are coupled due to their initial curvature. Also, the behavior is affected by cross beams. To investigate the behavior of horizontally curved I-girder bridges, it is necessary to consider curved girders with cross beams. In order to perform free vibration analyses of horizontally curved I-girder bridges, a finite element formulation is presented here and a finite element analysis program is developed. The formulation that is presented here consists of curved and straight beam elements, including the warping degree of freedom. Based on the theory of thin-walled curved beams, the shape functions of the curved beam elements are derived from homogeneous solutions of the static equilibrium equations. Third-order hermits polynomials are used to form the shape functions of the straight beam elements. In the finite element analysis program, global stiffness and mass matrix are composed, based on the Cartesian coordinate system. The Gupta method is used to efficiently solve the eigenvalue problem. Comparing the results of several examples here with those of previous studies, the formulation presented is verified. The validity of the program developed is shown by comparing results with those analyzed by the shell element.

  • PDF

Load Distribution Factors for Two-Span Continuous I-Girder Bridges (2경간 연속 I-형교의 하중분배계수)

  • Back, Sung Yong;Shin, Gi Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.233-245
    • /
    • 2007
  • Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

Drilled Shaft Designs and Constructions using Pile Load Tests at the Government-Financed Section of Incheon Bridge (재하시험을 활용한 인천대교 국고구간 현장타설말뚝의 설계와 시공)

  • Cho, Sung-Min;Jeon, Byeong-Seob;Chung, Il-Hwan;Choi, Go-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.562-573
    • /
    • 2006
  • Incheon Bridge which will be the world's 5th long cable-stayed bridge in 2009 has been built under the management by Korea Highway Corporation. Incheon Bridge consists of several special-featured bridges and construction sections are divided into two groups, the private investment section with the foreign concessionaire and the government-financed section. 8 pile load tests were performed to investigate the behavior of rock-embedded large-diameter drilled shafts at both sections. Among these, 4 tests at the government-financed section have been utilized to adjust the detailed designs that were carried out individually as well as to find the actual bearing capacity of the ground prior to the commencement of constructions under the joint control of all contractors. Comprehensive procedures of the design and the construction of foundations using pile load tests were introduced.

  • PDF

Study on lateral resistance of steel-concrete composite drilled shafts by using 3D FEM (3차원 유한요소법을 이용한 강관합성 말뚝재료의 수평저항력 고찰)

  • Lee, Ju-Hyung;Shin, Hyu-Soung;Choi, Sang-Ho;Park, Jae-Hyun;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.683-690
    • /
    • 2008
  • Steel-concrete composite columns are popular for superstructures of bridges, and the outside steel attached to the shaft increases the shaft resistance due to confining concrete. In this study, lateral resistance of steel-concrete composite drilled shafts was evaluated quantitatively based on numerical analysis when steel casings are used as structural elements like composite columns. Ultimate lateral resistance of composite drilled shafts with various diameters was numerically calculated through 3D finite element analysis. For that, elasto-plastic model with perfectly plasticity is involved to capture the ultimate load. A commercial FEM program, MIDAS-GTS, is used in this study. Real field conditions of the West Coast, Korea were considered to set up the ground conditions and pile lengths required for this parametric studies. Detailed characteristics of the stress and displacement distributions are evaluated for better understanding the mechanisms of the composite shaft behavior.

  • PDF

Construction stage analysis of fatih sultan mehmet suspension bridge

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.489-505
    • /
    • 2012
  • In this study, it is aim to perform the construction stage analysis of suspension bridges using time dependent material properties. Fatih Sultan Mehmet Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element models of the bridge are modelled using SAP2000 program considering project drawing. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Because of the fact that the bridge has steel structural system, only prestressing steel relaxation is considered as time dependent material properties. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

Static Analysis of Actual Bridges for Application of Thin Polymer Concrete Deck Pavements (폴리머 콘크리트 박막 교면포장 적용을 위한 실제 교량 정적 해석)

  • Jeong, Young Do;Kim, Jun Hyung;Lee, Suck Hong;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.421-431
    • /
    • 2011
  • In this paper, actual bridges constructed with SMA (Stone Mastic Asphalt) deck pavement and virtual bridges substituted the deck pavement with polymer concrete under the same conditions were statically analyzed to investigate applicability of the thin polymer concrete bridge deck pavements. PSC (prestressed Concrete) girder bridge, steel box girder bridge, PSC box girder bridge, and RC (Reinforced Concrete) rahmen bridge constructed with the SMA deck pavement were analyzed and compared to evaluate various types of the bridge. The bridge deck and pavement were assumed to be fully bonded and the stress and deformation during the construction were ignored while those due to pavement weight and vehicle loading were analyzed. According to the analysis results, the stress and deformation of the bridges using the polymer concrete due to the pavement weight were smaller than those using the SMA because of smaller self weight due to lighter unit weight and thinner thickness of the pavement. The stress and deformation of the bridges using the polymer concrete due to the vehicle loading were larger than those using the SMA because of the smaller area moment of inertia due to the thinner pavement thickness. In case that the pavement weight and vehicle loading applied simultaneously, the stress and deformation of the bridges using the polymer concrete were smaller because effect of self weight reduction was more dominant. Investigation of performance of the bridge deck pavement and analysis of economical efficiency are warranted.

Basic Study on Bridge Asset Management Framework and LOS for Efficient Downtown Bridge Maintenance (효율적인 도심지 교량관리를 위한 교량자산관리 체계 및 서비스수준(LOS) 개발을 위한 기초연구)

  • Kim, Gyung-Hyun;Kim, Dong-Jin;Lim, Jong-Kwon;Park, Mi-Yun;Lee, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.671-679
    • /
    • 2016
  • Bridges, which constitute one of the key facilities in a social infrastructure, are easily accessed and used by users, so that keeping their performance above a certain level is essential. According to various cases in the U.S., Japan and Europe with a long construction history, it is expected that the maintenance cost of bridges in Korea will increase continuously in the future, so a rational decision making system based on engineering factors is necessary to optimize the performance of and maintain them by allocating the limited budget efficiently. This study is a preliminary basic study for the purpose of developing a common asset management system for managing all of the bridges and maintaining the level of service provided by them. The scope of this preliminary study is limited to bridges in urban areas. The bridge asset management system for bridges in urban areas, their level of service (LOS) and performance measure (PM) were developed by carrying out a workshop consisting of both experts and stakeholders. The analysis on the weights of the value and performance measure for each performance indicator was carried out by using the multi-attribute utility theory and the AHP method. In order to confirm the application of the weight of the performance measure and value of the performance indicator, six bridges in an example city were selected, LOS analysis was applied and its results were reviewed.