• Title/Summary/Keyword: bridges construction

Search Result 1,072, Processing Time 0.027 seconds

Reduction of Prestress Loss in PSC (Prestressed Concrete) Continuous Girder by Employing Block-out Method (지점부 블록아웃 공법으로 연속화된 프리스트레스트 콘크리트 거더의 긴장력 손실 저감)

  • Shin, Kyung-Joon;Kim, Yun-Yong;Kim, Seung-Jin;Choo, Tae-Heon;Lee, Hwan-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 2014
  • Prestressed concrete girder bridge has been one of the most widely used bridges in the world because of its excellent construction feasibility, economic efficiency, serviceability, and safety. In certain situations, the prestressing tendon is supposed to be bent by the construction error and the radius of curvature at the continuous joint of PSC girders, and this leads to the loss of prestressing force. However, this kind of prestress loss is not considered in the design and construction processes. This study proves that the prestress loss occurs at the continuous joint due to the local bending of tendon by the construction error or the radius of curvature. Also, a method that can reduce this type of prestress loss is proposed, and proved by the experiment. The result shows that maximum 10% of prestress loss occurs at the continuous joint and the proposed block-out method can reduce the prestress loss ratio by maximum 5%, approximately. This means that the block-out method can enhance the prestressing efficiency of continuous PSC girder bridges.

A Study on the Optimum Design of Three Span Continuous Preflex Composite Girder Bridge (3경간 연속 Preflex 합성형교의 최적설계에 관한 연구)

  • Koo, Min Se;Chang, Suong Su;Jeong, Jin Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.125-135
    • /
    • 1998
  • This study presents a design method for three-span continuous preflex composite girder bridges (3S-PCB) which imposes prestresses in the negative moment region by lifting or lowering interior supports and the design method is automated by a computer program which incorporates optimal design procedure. The objective function for the design of 3S-PCB minimizes the cost of construction materials and the constraint functions represent the limited dimensions of the design section and the allowable stress for each structural member as given in the specifications. Optimal design procedure used in this study is a modification of existing sequential unconstrained minimization technique (SUMT), a numerical analyses procedure for two-span continuous preflex composite bridges. The optimized design sections determined for each span length are compared with those of simple preflex composite beams (SPCB) and the optimal girder depth is determined by defining the relationship between girder depth and construction material costs.

  • PDF

The Road to Modernity? Politics of Building Bridges and Regional Development in the Case of the Musi Bridge (근대로 향하는 길? 무시 대교(Jembatan Musi)를 통해서 본 도로건설과 지역개발의 상관관계)

  • Yeo, Woonkyung
    • The Southeast Asian review
    • /
    • v.24 no.1
    • /
    • pp.191-221
    • /
    • 2014
  • South Sumatra's capital, Palembang, has long maintained a river-oriented transportation system. With road transportation's increased importance for exploiting natural resources, however, hundreds of roads have been constructed since the Dutch colonial period. This article examines how the construction of roads and bridges affected people's lives and social networks in Palembang, and what social and political significance it has in the context of a region in the postcolonial Indonesia, with a focus on the huge river called the Musi River, which horizontally crosses the city. After independence, there has been strong aspiration to link these two parts by road, and in 1965 the Musi Bridge (then the Sukarno Bridge) over the river was eventually opened. The construction of the bridge apparently initiated socioeconomic transformations and development in the region, including Ulu (the southern river bank)'s rapid urbanization. However, the features of regional development actually were prerequisites for "national" development. The regional development was impossible without financial support from the central government, and the local or regional aspiration for development was often supported only when it fitted with national envision. The Musi Bridge was a model case that fitted with such national envision. While it was the symbol of regional development, it was also celebrated as an exemplary sign of "national" development, by both Sukarno's government and Suharto's New Order regime. By analyzing the discussions and discourses regarding the Musi project since early 1950s, in addition to its social and economic impact after the construction, this article explores the continuities and changes in the roles and significance of the (construction of the) Musi Bridge with the changing political backstops in both regimes. Together with it, this article also aims to reexamine the interplay between "the national" and "the regional" in the prevalent aspiration for the national and regional "development" throughout the 1950s and 1960s.

A numerical model for the long-term service analysis of steel-concrete composite beams regarding construction stages: Case study

  • Marcela P. Miranda;Jorge L. P. Tamayo;Inacio B. Morsch
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.199-215
    • /
    • 2024
  • The Caynarachi Bridge is a 130 m long posttensioned steel-concrete composite bridge built in Peru. The structural performance of this bridge under construction loads is reviewed in this paper using numerical simulation. Hence, a numerical model using shell finite elements to trace its deformational behavior at service conditions is proposed. The geometry and boundary conditions of the superstructure are updated according to the construction schedule. Firstly, the adequacy of the proposed model is validated with the field measurements obtained from the static truck load test. Secondly, the study of other scenarios less explored in research are performed to investigate the effect of some variables on bridge performance such as time effects, sequence of execution of concrete slabs and type of supports conditions at the abutments. The obtained results show that the original sequence of execution of the superstructure better behaves mechanically in relation to the other studied scenarios, yielding smaller stresses at critical cross sections with staging. It is also demonstrated that an improper slab staging may lead to more critical stresses at the studied cross sections and that casting the concrete slab at the negative moment regions first can lead to an optimal design. Also, the long-term displacements can be accurately predicted using an equivalent composite resistance cross section defined by a steel to concrete modulus ratio equal to three. This article gives some insights into the potential shortcomings or advantages of the original design through high-fidelity finite element simulations and reinforces the understating of posttensioned composite bridges with staging.

A STUDY ON THE LIFE CYCLE COST ANALYSIS IN LIGHT RAIL TRANSIT BRIDGES: FOCUSED ON SUPERSTRUCTURE

  • Lee Du-heon;Kim Kyoon-tai;Kim Hyun Bae;Jun Jin-taek;Han Choong-hee
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.30-40
    • /
    • 2007
  • The demand for light-rail construction projects has recently been increasing, and they are mostly supervised by private construction companies. Therefore, a private construction company that aim to raise gains from the operation of the facilities during the contract period greater than what they invested should b able to accurately calculate the costs from the aspect of Life Cycle Cost (LCC). In particular, a light-rail transit bridge that has a heavier portion from the aspect of the cost of light-rail transit construction requires a more accurate calculation method than the conventional LCC calculation method. For this, an LCC analysis model was developed and a cost breakdown structure was suggested based on literature review. The construction costs by shape of the upper part of a light-rail transit were calculated based on the cost breakdown system presented in this paper, and the cost generation cycle and cost unit price were collected and analyzed based on records on maintenance costs, rehabilitation and replacement. In addition, after forming some hypotheses in order to perform the LCC analysis, economic evaluation was conducted from the aspect of the LCC by using performance data by item.

  • PDF

Analysis of Load Carrying Capacity of Bridges Based on Field Data with Serviced Time (실측자료에 기초한 공용년수 증가에 따른 교량 내하력 분석)

  • Kyung, Kab Soo;Lee, Yeong Il;Lee, Sung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.31-38
    • /
    • 2015
  • In this paper, change of load carrying capacity of bridges with time was analyzed referring to the safety inspect data stored in the KISTEC. From this study, it was known that the capacity is rated differently by various parameters such as inspector's subjective. Accordingly, an improved method, in this paper, is suggested which can correct deviation due to several uncertainties involved in rating process. The suggested method can be utilized for efficient maintenance of bridges such as cycles and determination of priority of retrofit, and estimation of service life etc.

Flutter stability of a long-span suspension bridge during erection

  • Han, Yan;Liu, Shuqian;Cai, C.S.;Li, Chunguang
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.41-61
    • /
    • 2015
  • The flutter stability of long-span suspension bridges during erection can be more problematic and more susceptible to be influenced by many factors than in the final state. As described in this paper, numerical flutter stability analyses were performed for the construction process of Zhongdu Bridge over Yangtze River using the commercial FE package ANSYS. The effect of the initial wind attack angle, the sequence of deck erection, the stiffness reduction of stiffening girders, the structural damping, and the cross cables are discussed in detail. It was found that the non-symmetrical sequence of deck erection was confirmed to be aerodynamically favourable for the deck erection of long-span suspension bridges and the best erection sequence should be investigated in the design phase. While the initial wind attack angle of $-3^{\circ}$ is advantageous for the aerodynamic stability, $+3^{\circ}$ is disadvantageous compared with the initial wind attack angle of $0^{\circ}$ during the deck erection. The stiffness reduction of the stiffening girders has a slight effect on the flutter wind speed of the suspension bridge during erection, but structural damping has a great impact on it, especially for the early erection stages.

Long-term Behavior of FCM Bridges considering Seasonal Temperature Variation - Part 1 (계절변화에 따른 PSC 균형 켄틸레버 교량의 장기거동 특성)

  • Lee, Son-Ho;Lee, Hak-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.2 s.2
    • /
    • pp.93-101
    • /
    • 2001
  • The objective of this study is to derive a shrinkage correction formula that considers temperature effect and to develop a methodology for the improved prediction of the long-term behavior of the FCM bridges by considering seasonal temperature variations in-situ. Thereby, current formulation were performed by using the actual experimental shrinkage data including seasonal temperature variation. The investigation of the long-term behavior of the FCM bridge was performed on the construction site in order to decide applicability of the shrinkage formula Numerical results by the general method indicates inaccurate values of total strain when considering real strain, whereas the applied method demonstrates a good agreement in the resultant strain. In consequently, the applied method will improve the prediction of the long-term deformation of the FCM Bridges.

  • PDF

Design Process of 5 Pedestrian Bridges in Chongna, Incheon (인천청라지구 5개 보도교의 디자인 프로세스)

  • Park, Sun-Woo;Choi, Chui-Kyoung
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.197-202
    • /
    • 2008
  • The Korea Land Corporation have planned Chongna site in Incheon as a great complex town including residence, financial center, resort, shopping mall, tour and sport. One of the large estate(17,800,000$m^2$) is under construction. Cheongna site is divided into six zoning parts, according to the meaning of 6 jewels(crystal, sapphire, ruby, emerald, jade, pearl, diamond). KLC required to me 6 pedestrian with various special forms and structural system. I will introduce a various pedestrians. There are not only 4 stayed and suspended bridges, but also a truss and arch bridges.

  • PDF

Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction

  • Erdogan, Yildirim S.;Catbas, Necati F.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • The vehicle-bridge interaction (VBI) analysis might be cumbersome and computationally expensive in bridge engineering due to the necessity of solving large number of coupled system of equations. However, VBI analysis can provide valuable insights into the dynamic behavior of highway bridges under specific loading conditions. Hence, this paper presents a numerical study on the dynamic behavior of a conventional highway bridge under strong near-field and far-field earthquake motions considering the VBI effects. A recursive substructuring method, which enables solving bridge and vehicle equations of motion separately and suitable to be adapted to general purpose finite element softwares, was used. A thorough analysis that provides valuable information about the effect of various traffic conditions, vehicle velocity, road roughness and effect of soil conditions under far-field and near-field strong earthquake motions has been presented. A real-life concrete highway bridge was chosen for numerical demonstrations. In addition, sprung mass models of vehicles consist of conventional truck and car models were created using physical and dynamic properties adopted from literature. Various scenarios, of which the results may help to highlight the different aspects of the dynamic response of concrete highway bridges under strong earthquakes, have been considered.