• Title/Summary/Keyword: bridges construction

Search Result 1,072, Processing Time 0.03 seconds

A Study on the Design Parameters of the PSC I-Type Girders for Long Span Bridges (장지간 교량을 위한 PSC-I형 거더의 단면 설계변수 연구)

  • 심종성;오홍섭;김민수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.6
    • /
    • pp.13-22
    • /
    • 2000
  • In order to resolve the problem of increasing traffic entailed by the economic development, road system is reorganization and new highways are built, and long span bridges over 40m are being constructed in environmental and aesthetic considerations. Most long span bridges that are currently being constructed are in general steel box girder and preflex girder bridges; however these types of breiges are less efficiency than PSC I-type girder bridges in terms of construction cost and maintenance. Therefore, in these study, structural efficiency of PSC I-type girders based on section parameters, concrete compressive strength and other design parameter is observed to develope new PSC I-type girder for long span bridges. As a results of analysis, most important design parameters that control the stress of the girder are found to be the top flange width and the height of girder. In this light, the relationship between the two variables is determined and cross-section details of the girder that most appropriates for the long span bridges are proposed. The use of high strength concrete appears to increase the general design span however the increase rate of the span from increasing concrete ultimate strength appears to be reduced depending on the span. Also, the optimal girder spacing is determined through the parameter studies of design span using the proposed girder.

Dynamic Characteristics of Simply Supported Single Span Bridges for KTX and HEMU using Design Diagram (설계다이어그램을 이용한 KTX와 HEMU 차량 주행시 단경간 단순지지 교량의 동특성 분석)

  • Cho, Jeong-Rae;Cho, Keunhee;Kwark, Jong-Won;Kim, Young Jin
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.498-507
    • /
    • 2012
  • This paper presents the ERRI design diagrams of KTX and HEMU applicable to simply supported single span bridges, and analyzes the dynamic characteristics and design considerations of the bridges under KTX and HEMU using the diagrams. The design diagrams of KTX and HEMU are calculated for the bridges with 25m, 30m, 35m and 40m span lengths, which are widely used for simple bridge in Korea. From the design diagrams, the dynamic characteristics of the bridges with the selected span lengths are analyzed. In addition, the design consideration is discussed to satisfy the design requirement of acceleration. It is desirable for the bridge with 25m span length to avoid resonance both for KTX and HEMU. Since larger responses are expected for HEMU in the bridge with 30m span length, and for KTX in the bridge with 35m and 40m span length, the bridges should be planned to have enough mass satifying acceleration requirement at resonance, or to avoid the resonance.

Construction stage analysis of Kömürhan Highway Bridge using time dependent material properties

  • Altunisik, Ahmet Can;Bayraktar, Alemdar;Sevim, Baris;Adanur, Suleyman;Domanic, Arman
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.207-223
    • /
    • 2010
  • The aim of this study concerns with the construction stage analysis of highway bridges constructed with balanced cantilever method using time dependent material properties. K$\ddot{o}$m$\ddot{u}$rhan Highway Bridge constructed with balanced cantilever method and located on the 51st km of Elazi$\check{g}$-Malatya, Turkey, highway over Firat River is selected as an application. Finite element models of the bridge are modelled using SAP2000 program. Geometric nonlinearity is taken into consideration in the analysis using P-Delta plus large displacement criterion. The time dependent material strength variations and geometric variations are included in the analysis. Elasticity modulus, creep and shrinkage are computed for different stages of the construction process. The structural behaviour of the bridge at different construction stages has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. As analyses result, variation of internal forces such as bending moment, axial forces and shear forces for bridge deck and column are given with detail. It is seen that construction stage analysis has remarkable effect on the structural behaviour of the bridge.

The Methodology of Determination of the Allotment Ratio in Maintenance Cost on the Multi-Purpose Steel Bridge (복합이용 강교량의 유지관리비 분담비율 결정을 위한 방법)

  • Kim, Kyoung Nam;Lee, Seong Haeng;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.747-758
    • /
    • 2006
  • With the growth of economy, the esthetic values of bridges become significant points in the decision process of a type of new bridges. So, it is common that a long-span bridge or a multi-purpose bridge are selected as the type of new bridges. Also, the economic growth derives increase in traffic and then the increased traffic derives multi purpose bridges from the decision process of bridge types. In the multi-purpose bridges with private fund, the construction cost is simply alloted to several organizations according to the percentage of participation and usage. But the allotment of the maintenance cost is not simple. Because the loads and safety factors in design are different between the criterion of design of highway bridges and that of railway bridges. In this study, we verify the possible problems in case of allotment method of maintenance cost in foreign examples as well as domestic example. As one of the method of determination of allotment ratio in maintenance cost, the method based on the stress of structural analysis is presented and it can be an example in the similar problem later.

Estimation Model for Approximate Construction Quantities of Suspension Bridge in Early Stage (사업기획단계에서의 현수교의 물량추정을 위한 모델연구)

  • Park, Weon-Tae;Chun, Kyoung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • Bridge construction cost estimates have generally been conducted by using historial unit-price(per meter or square meter). The traditional estimating method based on unit-price references can never completely reflect the specialty of cable supported bridge. In this paper, we have developed the system for supporting the approximate construction cost and the quantity estimation based on 3D model information in the pre-project planning phase of 3-span continuous suspension bridge with 2-pylons. First of all, we'd analyzed the design information (such as structural design report, blueprint and quantity) and the real cost data from the existing suspension bridges and derived the design variables of the bridges. We developed the BIM wizard that generates a suspension bridge model parametrically based on derived design variables. The principle material quantities of suspension bridge are calculated directly from 3-dimensional bridge model built by using the BIM wizard. We have established the system that the construction cost can be estimated more specific than the traditional estimating method.

Prediction of UDPSC Bridge's Maintanence Cost based on Life Cycle Cost Analysis (LCC 분석에 기초한 UDPSC 교량의 유지관리비 예측에 관한 연구)

  • Shim, Bo-Hyun;Lee, Heung-Chol;Woo, Sung-Kwon
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.638-641
    • /
    • 2006
  • In this paper, A calculating cost method of maintenance and repair for bridge which is built up by new construction technique named Up-Down Precast Concrete(UDPSC). After 2000, 109 Bridges which are using UDPSC technique have been built up, 37 bridges's construction work are processing, and 194 designs are presented for construction. Because this technology has developed recently, there are few field data for analyzing the maintenance and repair cost. Therefore, the maintenance and repair cost is computed using Construction and Transportation Ministry's guide line for computation and former research's data.

  • PDF

Performance Requirement of Cast-in-place Concrete with Sandwich Insulation (타설형 콘크리트 중단열 벽체의 요구성능 분석)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.10-11
    • /
    • 2014
  • Energy load of building affected by insulation performance of building's exterior. and insulation system can be classify interior insulation, exterior insulation, sandwich insulation according to install place of insulation. but within interior insulation system, corner wall and the cross outer wall-slab insulation part may occur thermal bridges. And then, within exterior insulation system is more superior insulation performance than interior insulation, but it has difficult to apply, easily broken at high building because of strong wind load. And also difficult to maintenance exterior insulation system. So, in this study, to found requirement performance of cast-in-place sandwich insulation system that is superior insulation performance and easy construction and maintenance. requirement performance of cast-in-place sandwich insulation system is 1) To avoid thermal bridges in the insulation performance, 2) Both sides concrete wall can be composite action in the structural performance. Because of this study, can develops cast-in-place sandwich insulation system and this insulation system contribute to improve insulation performance of apartment-house and high building.

  • PDF

COMPOSITES IN CONSTRUCTION - CONSTRUCTION WITH DESIGNED STRUCTURES I - (건설에서의 복합재료 -설계된 구조물을 사용한 건설 I-)

  • Kim, Duk-Hyun;Han, Bong-Koo;Oh, Sang-Sub;Lim, Tae-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.161-164
    • /
    • 2003
  • Almost all buildings/infrastructures made of composite materials are fabricated without proper design. Unlike airplane or automobile parts, prototype test is impossible. One cannot destroy 10 story buildings or 100-meter long bridges. People try to build 100-story buildings or several thousand meter long bridges. In order to realize "composites in construction", the following subjects must be studied in detail, for his design: Concept optimization, Simple method of analysis, Folded plate theory, Size effects in failure, and Critical frequency. Unlike the design procedure with conventional materials, his design should include material design, selection of manufacturing methods, and quality control methods, in addition to the fabrication method.on method.

  • PDF

COMPOSITES IN CONSTRUCTION - CONSTRUCTION WITH DESIGNED STRUCTURES II - (건설에서의 복합재료 -설계된 구조물을 사용한 건설 II-)

  • Kim, Duk-Hyun;Kim, Du-Hwan;Oh, Sang-Sub;Lim, Tae-Ho
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.165-168
    • /
    • 2003
  • Almost all buildings/infrastructures made of composite materials are fabricated without proper design. Unlike airplane or automobile parts, prototype test is impossible. One cannot destroy 10 story buildings or 100-meter long bridges. People try to build 100-story buildings or several thousand meter long bridges. In order to realize "composites in construction", the following subjects must be studied in detail, for his design: Concept optimization, Simple method of analysis, Folded plate theory, Size effects in failure, and Critical frequency. Unlike the design procedure with conventional materials, his design should include material design, selection of manufacturing methods, and quality control methods, in addition to the fabrication method.on method.

  • PDF

A Study on the Bearing Capacity of Steel Composite Concrete Lining Board (강합성 콘크리트 복공판의 내력시험에 관한 연구)

  • Paik, Shinwon;Kim, Yongon
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.122-126
    • /
    • 2012
  • Steel lining board usually is used as a floor on the temporary steel bridges. It also is installed in the subway construction site. However, in particular in subway construction, renovations and site of old bridges, these steel lining board structures have a problem such as noise, accidents and slip hazards. So steel composite lining board is being developed to solve this problem. Steel composite lining board consists of compressive concrete showing excellent performance in slip, durability, resistance and noise, lower tensile and shear steel showing high safety, effective and superior workability in many respects. Steel composite lining board structure gradually is used in many construction sites, because it has a high quality such as durability, little noise and slip. In this study, flexural tests of steel composite lining board in accordance with welding patterns were conducted to compare the performance of the structure.