• Title/Summary/Keyword: bridges construction

Search Result 1,072, Processing Time 0.03 seconds

A Study on the Behavior of Prestressed Concrete Box Girder Bridges According to material Properties (재료특성치의 변화로 인한 프리스트레스트 콘크리트 박스거더 교량의 거동분석)

  • 오병환;양인환;김의성;최인혁;김세훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.627-632
    • /
    • 1997
  • Recently, the prestressed concrete box girder bridges are increasingly built at various locations in the world. The mechanical and structural behavior of prestressed concrete brides varies because of time-dependent material properties and sequential change of structural system due to stepwise construction. The time-dependent behavior of concrete is of importance in the design and construction of segmentally constructed and cast-in-place prestressed concrete box girder bridges. The structural response is affected b variations in creep, shrinkage properties of concrete. In this study, the example of time-dependent deformations is extended to establish how the variability in concrete properties affects the accuracy of the calculated deformations in such a bridge, and finally the results are discussed.

  • PDF

Evaluation of long term behavior of steel plate girder bridges with precast concrete decks (프리캐스트 바닥판을 사용한 강합성거더교의 장기기동 해석)

  • Kim, Su-Hyun;Lee, Jong-Min;Cho, Sun-Kyu;Go, Dong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.1326-1331
    • /
    • 2006
  • The precast concrete deck is one of suitable solutions for replacement and new construction in urban area. However, the precast concrete deck could be a weak point of the steel plate girder bridges structurally due to the connections between precast panels in the longitudinal direction. Thereafter, it is necessary for improvement of durability and load carrying capacity to introduce the prestress force in the longitudinal direction Some cracks of connections at the precast concrete deck may be occurred due to live loads, the difference of temperature and long-term effects. The shrinkage and creep of concrete may significantly affect long-term behaviors which occur tensile stresses at the precast concrete deck of steel plate girder bridges. In this study, the time-dependant analysis program has been developed to determine the initial prestress force in the longitudinal direction considering loss of stress at the precast concrete deck. Also it has been estimated the initial prestress force by construction stages and shapes of girder.

  • PDF

Prestressed Concrete Girder Bridges Strengthened by External Post-tensioning Method

  • Kim, Kwang-Soo;Park, Sun-Kyu;Kim, Hyeong-Yeol
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • This Paper deals with the analysis of both unstrengthened and strengthened prestressed concrete girder bridges. Finite element method is utilized to perform the analysis of superstructures. Based on the grillage method of analysis. emphasis is Placed on the modeling techniques for structures. The conventional grillage method of analysis is modif'=ed so that the interaction between the slab and gilder behaviors can be taken into account in the analysis A Prototype of simply supported prestressed I-type girder bridge is selected for the analysis. The results of numerical analyses are compared with those of load test. The results of analysis indicate that the proposed method of analysis gives more realistic response of bridges than the conventional grillage method.

  • PDF

Seismic Design of Prefabricated Light Weight Bridges (승용차 전용 조립식 고가도로의 내진설계 연구)

  • 강형택;박영하;김성훈;이일근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.288-294
    • /
    • 2003
  • Increasing the volume of traffic on the roads causes social and economical problems such as increasing air-pollution and distribution cost. Prefabricated light weight bridge becomes a possible solution for these problems in the urban area where it is difficult to construct new one or expend the existing road. There are some merits in this kind of bridge. First, the design live and dead loads are minimized by allowing only passenger cars. Second employing prefabrication construction scheme reduces the construction time. Third, there is no need to buy land if the elevation road is placed on the top of existing one. In seismic design of bridges, base isolation has been an effective solution when the bridge has stiff piers and a heavy superstructure. The prefabricated light weight bridge has different dynamic characteristics from the ordinary bridges. In this paper, the applicability of base isolators such as lead rubber bearing and elastomeric bearing, to prefabricated light weight bridge is examined.

  • PDF

AN EVALUATION ON THE EFFECTIVE FLEXURAL RIGIDITY OF RC SLABS STRENGTHENED WITH CFRP SHEET AND GSP PLATE

  • Shim Jae-Joong;Song Seul-Ki;Oh Min-Ho;Cui-Jie;Park Sun-Kyu
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1272-1277
    • /
    • 2009
  • Since improved capacity for RC bridges has been required due to deterioration or increase in traffic, the deflection of cracked reinforced concrete slabs need to be reconsidered. Strengthening is known as the better way to improve capacity of bridges than reconstructing. In this paper, Fiber Reinforced Plastic (FRP) was introduced as one of the best strengthening methods for civil structures. The structures strengthened with FRPs can improve the strengthening capacity and serviceability. Therefore, CFRP sheet and Glass Fiber-Steel Composite Plate (GSP) in this research were used for strengthening slabs of RC bridges. Experimental data from the strengthening will be helpful to better understand the effect of the strengthening and effective flexural rigidity.

  • PDF

An innovative geometry control method for short-line match precast segmental bridges

  • Xuzheng Liu;Huibing Xu;Jianyang Yu;Wei Quan
    • Advances in concrete construction
    • /
    • v.16 no.2
    • /
    • pp.79-89
    • /
    • 2023
  • The occurrence of unexpected horizontal offset in the instrument or target will result in accumulated horizontal deviation in segment alignment with traditional short-line match method. A geometry control method, the four-point method, is developed for precast segmental bridges to avoid the influences of unexpected horizontal offset. The concept of the four-point method is elucidated. Furthermore, the detailed instruments and instructions are introduced. Finally, the four-point method is validated through a practical engineering application. According to the survey data, after short-line match precast construction, the vertical deviations on both sides vary between -5 mm and 5 mm in almost all segments, and the horizontal deviations vary between -4 mm and 4 mm in all segments. Without on-site adjustment, the maximum vertical and horizontal closure gaps are 12.3 and 26.1 mm, respectively. The four-point method is suggested to alleviate the issues associated with relatively poor soil conditions in casting yard.

Enhancing Bridge Deterioration Prediction Using Element Adjacency Graphs by OCR-Processed Drawings: A Case Study of Girder Bridges in Japan

  • Shogo INADOMI;Pang-jo CHUN
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.351-358
    • /
    • 2024
  • In Japan, bridge inspections are mandated every five years. The inspection database for bridges under the jurisdiction of the Ministry of Land, Infrastructure, Transport, and Tourism enables the acquisition of damage progression data for each structural element. This study develops a methodology for predicting the deterioration of girder bridges, employing a novel approach where inspection drawings are processed using Optical Character Recognition (OCR) to extract element numbers and their spatial relationships, subsequently creating a comprehensive graph of these elements. A key feature of this prediction methodology is its ability to consider the adjacency relationships between different bridge members, made possible by the detailed analysis of drawing information and a Graph Transformer model. The research examines and compares the accuracy of predictions made with and without considering adjacency relationships, highlighting the effectiveness of incorporating detailed structural information in the predictive analysis of bridge deterioration.

Military Load Classification (MLC) on Concrete Bridges in North Korea (북한 콘크리트 교량의 군용하중급수 평가)

  • Park, Hyo Bum;Kwak, Hyo Gyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.513-520
    • /
    • 2017
  • For the last 60years, North Korea has constructed a lot of roadway bridges with different standard from that used in South Korea, and since North Korea prefer to take advantage of train more than truck for long distance transport, the construction and maintenance of roadway bridges have not been constructed effectively. Upon these situations, an exact evaluation of the resisting capacity for bridges in North Korea has been required to check of any bridge can be used in time of war. This paper introduces an evaluation of bridges in North Korea on the basis of Military Load Classification (MLC). Three different types of concrete bridges are considered, and the numerical analysis and design calculation give the military loadings which can pass through the bridges in North Korea.

The Effect of Secondary Members on the Behavior of Steel-Concrete Composite Two-Girder Railway Bridges (2거더 강-콘크리트 합성형 철도교의 거동에 대한 2차부재의 영향 평가)

  • Bae Doo-byong;Cho Joon-hee
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.41-50
    • /
    • 2005
  • Steel -Concrete Composite two girder railway bridges applying high performance steel with extra thick plate have economic and aesthetic advantages due to the simplification of manufacturing and construction process. However, steel bridges are seldom adopted in domestic railway bridge, since steel bridges are not efficient as R.C bridges considering dynamic characteristics and noise, etc. While highway bridges do not have lower horizontal bracing and larger interval of diaphragm cross beam, railway bridges install lower horizontal bracings to control the torsion due to heavy eccentrical line load. Accurate finite element analysis were performed with the parameters of existence of bracing and bracing shape, with the cross beam interval and stiffness, etc. To find out the effects of secondary members such as horizontal bracings and diaphragms, static md dynamic analysis have been performed by using finite element method. In this study, few member plate-girder bridges are analyzed with variable span lengths to examine the dynamic behavior and limits of damping. And though lateral bracings are members against torsion, but lateral bracing's absence is no big problem. Time history analysis using mode superposition method makes proof of this result.

Distribution Properties of Airborne Chlorides in Korea (우리나라의 비래염분 분포 특성)

  • Lee, Jong-Suk;Ahn, Ki-Hong;Kim, Do-Gyeum;Park, Jung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.769-776
    • /
    • 2010
  • Concrete structures immersed in seawater are exposed to uniform chloride concentration. However, seashore concrete structures are subjected to various airborne chlorides concentration depending on areas, distance from seashore, orientation of structures and wind direction etc. Therefore, structures which is not coming into direct contact with seawater are greatly affected by salt attack and those cases have been reported. This study intends to investigate salt attack by airborne chlorides in terms of the distance from the seashore based on the measurements conducted at 73 spots and 27 areas during 3 years in the Eastern, Western and Southern coasts of South Korea. Results revealed large regional variations of the salinity in coastal regions along with significant seasonal effects caused by seasonal winds. Moreover, the salinity is seen to diminish as the distance from the seashore increases at a rate corresponding to the function $y=ax^{-b}$. These results will be helpful to do the durability design and management of seashore structures.