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Abstract: In Japan, bridge inspections are mandated every five years. The inspection database for 

bridges under the jurisdiction of the Ministry of Land, Infrastructure, Transport, and Tourism enables 

the acquisition of damage progression data for each structural element. This study develops a 

methodology for predicting the deterioration of girder bridges, employing a novel approach where 

inspection drawings are processed using Optical Character Recognition (OCR) to extract element 

numbers and their spatial relationships, subsequently creating a comprehensive graph of these elements. 

A key feature of this prediction methodology is its ability to consider the adjacency relationships 

between different bridge members, made possible by the detailed analysis of drawing information and 

a Graph Transformer model. The research examines and compares the accuracy of predictions made 

with and without considering adjacency relationships, highlighting the effectiveness of incorporating 

detailed structural information in the predictive analysis of bridge deterioration. 
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1. INTRODUCTION 

In recent years, there has been a significant increase in the number of severely damaged infrastructure 

assets. To mitigate the risk of collapse, regular inspections have become essential. In response to a tunnel 

collapse in 2014, Japan's Ministry of Land, Infrastructure, Transport and Tourism (MLIT) mandated 

inspections of tunnels and bridges every five years. This policy has served as a key driver in promoting 

the comprehensive maintenance of the nation's bridges. However, the process of conducting thorough 

visual inspections is both time-consuming and labor-intensive. With the responsibility of overseeing 

more than 720,000 bridges, Japan's national and local governments face a daunting task in adhering to 

this prescriptive five-year inspection cycle, especially amidst a severe industry-wide labor shortage and 

stricter working hour regulations.  

To achieve sustainable maintenance of infrastructure, there is a demand for a more flexible approach 

to setting inspection periods tailored to the individual bridge. For instance, bridges at a higher risk of 

severe deterioration within the next three to five years should be inspected annually. Conversely, it is 

possible to extend the inspection intervals for bridges with a slower rate of deterioration, thereby 

allocating resources more efficiently to severe bridges. However, making regulatory changes, though 

rational, requires a robust and objective basis supported by data-driven case studies and historical 

damage trends, namely the prediction of deterioration. 

Prior research has explored two main approaches to predicting deterioration: theoretical models based 

on chemical and physical mechanisms and analysis of integrity transition retrieved by inspection 
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records. For instance, studies like [1] have modeled the movement of moisture and ions within concrete 

to predict the onset of deterioration. The latter approach, utilizing accumulated inspection records, 

includes methods such as regression analysis of the temporal changes in structural integrity [2], 

regression analysis of factors influencing integrity [3], and the use of hazard models to determine 

Markov transition probabilities [4]. These inspection analyses have been conducted at the component 

level. However, it is empirically known that damage occurs due to interactions between components or 

different elements of the same component. For example, damage in girders and deck plates of steel 

bridges tends to be spatially biased, and corrosion progresses in areas affected by water, such as joints 

and drain boxes [5]. Hence, incorporating the spatial relationships between components, or even more 

granular subdivisions of these elements, has the potential to enhance the precision of forecasts related 

to their deterioration. This study aims to develop a predictive model that assesses the integrity 

progression at the component and element levels. This framework will distinctively incorporate the 

spatial interconnections among these elements, following the approach of using inspection records as 

the foundation for deterioration prediction. 

Considering the adjacency of elements, using 3D models, including BIM, is a viable option. In [6], a 

method for plotting damage on 3D models was proposed. However, constructing a predictive model 

requires a substantial dataset of bridge 3D models reflecting damage, which is currently challenging to 

obtain. Nevertheless, even in situations where 3D models are unavailable, it is possible to predict 

deterioration while considering the spatial positioning of elements based on inspection records. This 

study involves the semi-automatic derivation of spatial relationships among elements from drawings. 

These drawings are sourced from the xROAD database, which is managed by MLIT. The process 

utilizes optical character recognition (OCR) and GPT-4, followed by creating a graph representation of 

element relationships. In this graph, every node symbolizes an element, with each element related to its 

respective damage assessment type. Subsequently, the study predicts the future deterioration of each 

element, considering the adjacency relationships represented in the graph. A Graph Transformer model 

is applied to the predictive model, forecasting the element-wise integrity for the time of the next 

inspection.  

Our primary contributions can be summarized as follows: 

1. We demonstrate a method to extract element adjacency information from existing records without 

the need for pre-constructed 3D models, employing advanced data processing techniques that 

combine OCR with the capabilities of GPT-4. 

2. We showcase the effectiveness of predicting damage at the element level by considering the 

spatial coordinates of these elements, utilizing the Graph Transformer technique to enhance the 

accuracy of our predictions. 

2. Related Work 

In the statistical analysis of inspection results for deterioration prediction, several distinct approaches 

have been undertaken. These involve studies analyzing the time variation of soundness [2], analyzing 

and selecting indicators that could affect soundness [3, 7, 8], and calculating transition probabilities 

between specific time intervals [4, 9]. In a method introduced by [2], inspection records were filtered 

by construction years using piecewise linear regression analysis to develop a pure degradation 

progression model excluding the restoration of soundness through repairs. It is crucial to consider the 

impact of repairs when developing regression models for soundness transition over elapsed years since 

construction. In practice, whether repairs have been made in the past is determined using outliers in the 

transition of soundness. By introducing piecewise linear regression analysis, it was shown that using 

inspection data up to about 40 years after construction can exclude the effects of repairs and result in 

predictions that are on the conservative side of safety, except for components that are frequently 

updated, like expansion joints. A mixed Markov degradation model was created using the filtered data, 

but the impact of using it on the model was smaller than on the regression model. Also, the prediction 

of severe degradation transitions by the Markov model was more towards the risky side compared to 

the regression model, indicating that scrutiny of prediction models remains unresolved. Study [3] 

involved creating a regression model by selecting appropriate explanatory variables from records 

through ordinal regression analysis, demonstrating the statistically significant impact of multiple 

variables such as bridge age, traffic volume, and deck area size. In [4], an exponential hazard model was 

developed to obtain a damage transition probability matrix. Regression methods for determining hazard 
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model parameters incorporated parameters like traffic volume and deck area for deterioration prediction. 

Study [9] examined the appropriateness of the assumption that inspection records accumulate at fixed 

intervals for calculating the transition probability matrix of soundness. It showed that the decision to 

apply Bayesian principles to consider variations in inspection intervals results in a 22% error in 

estimating service life. 

In addition to the studies using classical statistical analysis methods, there are also strategies that use 

deep neural networks for degradation prediction. Study [7] predicted the degradation of deck slabs using 

features of bridges selected by Boruta feature selection as inputs for k-nearest neighbor and multi-layer 

perceptron (MLP) models. Study [8] analyzed the soundness of 3k bridges using long short-term 

memory (LSTM) on the analysis of cumulative factors like traffic, chloride, and temperature. The LSTM 

method showed higher predictive performance compared to MLP. 

The above methods predict the condition of a specific member, or the entire bridge based on 

macroscopic features or degradation factors regarding the entire bridge, without explicitly considering 

the interrelation of damage between members. There is a prior study focusing on the interrelation of 

damage between different members. In Japan, regular inspections are mandated every five years. 

However, it is desirable to detect abnormalities that may occur in shorter periods than this five-year 

span. Study [10] examined a decision tree method to estimate the degradation of hard-to-inspect 

elements like deck plates, bearings, and piers from routine inspections of easily observable members. 

Interpretations of the rules represented by the decision tree were made and it suggested correlations 

between asphalt damage and deck slab cracking and between road width, which reflects traffic capacity, 

and concrete pier damage. However, issues such as low classification accuracy and the necessity for 

rule validation were raised. Note that it estimates the degradation degree at a point in time from 

information of other members, rather than the progression of degradation caused by interactions 

between elements. 

Regarding the graph analysis method, study [11] is an example of introducing graph neural network 

to consider the relationships between assets. It predicted degradation of each pavement section using 

GraphSAGE [12] and demonstrated that considering relationships among adjacent sections improves 

prediction accuracy, as they are likely to have similar traffic volumes and environmental conditions. 

In terms of analyzing inspection reports, study [13] used ontology-based, semi-supervised conditional 

random fields to perform class classification to retrieve items like damage reasons from the text of 

reports. On the other hand, our research indicates a lack of significant studies focusing on identifying 

member and element positions through drawing interpretation. 

3. Problem Formulation 

This study targets girder bridges in Tokyo that are managed by MLIT, representing a subset of the 

nationwide bridges under their jurisdiction. Although the method developed in this research can be 

applied to other regions due to the uniformity of the nationwide bridge database, we initially aim to 

construct the methodology using data from Tokyo. 

In our approach, data preprocessing involves creating a dataset by combining element-wise damage 

assessments with graphs representing the spatial relationships of elements, using diagrams that indicate 

element numbers. These drawings include the names of the component type and their respective element 

numbers. The layout of the drawings reflects the shape of the bridge in a grid form. For instance, the 

drawing of a girder is created from a perspective looking upwards from below, and reflects the number 

of girders, with each edge representing a girder element. This grid is typically rectangular but can curve 

to reflect bending road. For more complex structures like substructures, the drawings are schematically 

adapted to clearly represent the parts corresponding to the element numbers. Our study primarily focuses 

on creating adjacency graphs for the main superstructure. This includes main girder, cross girder, and 

deck slab, while excluding substructures. This exclusion is due to the complexity and labor-intensive 

process of graphing them, and the obscurity of inferring connection between substructures and 

superstructures from these drawings. The drawings, though divided by component, share common grid 

shapes. For example, the girder and deck slab drawings use almost identical grid shapes, with 

distinctions in edge thickness to emphasize which edge corresponds to element number. Damage 

assessment for each element is conducted according to the type of component and damage, with a 

grading system ranging from 'a' to 'e', where 'a' represents the healthiest condition and 'e' indicates the 
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most damaged. However, according to the guidelines, damage is sometimes recorded in fewer than five 

categories. For example, cracks are recorded using a three-level system: 'a'→'c'→'e'. 

The constructed graph is undirected, with nodes representing elements and edges representing the 

adjacency relationships between elements. Nodes store the type of component and integrity assessments 

for multiple damages. Regarding the edge connections, while there is flexibility in how to represent 

adjacency in graph form, our study bases its edge connections on the assumption that the main girder 

extends laterally in the drawings and the deck slab is sandwiched between the girders. Based on the 

constructed graph, we predict the damage of each element at the next inspection. The flow of our study 

is depicted in Figure 1. Previous studies [4, 9] have highlighted the need to consider the timing of 

damage progression and inspection intervals. However, our study focuses on predicting the assessment 

of the next inspection, assuming a general inspection interval of approximately five years. It aims to 

examine the accuracy of predictions, with or without the introduction of a method reflecting inter-

element damage. 

 

 

Figure 1. Workflow of the deterioration prediction 

 

4. Method 

In this study, we developed a method for constructing adjacency graphs using damage records and 

element number figures obtained from the xROAD database. Our approach involves node-level graph 

predictions to estimate the damage level of each element using a Graph Transformer. However, actual 

on-site assessment data for structural integrity often contains uncertainties, including variations in 

inspector recordings. To address this, we created a synthetic dataset to investigate the applicability of 

the Graph Transformer in an ideal scenario. Our results demonstrate the Graph Transformer's capability 

to make predictions considering adjacency relationships, highlighting its potential for practical 

implementation in structural health predictions. 

4.1. Graph Dataset Creation from Diagrams 

In this research, we combine OCR and GPT-4 to extract element numbers from multiple element 

number diagrams and use their spatial relationships to create adjacency graphs. Google Cloud Vision 

API is utilized for OCR. While OCR is generally successful in extracting element numbers, we 

encountered specific errors, necessitating a cleansing process using GPT-4 to refine the extracted strings 

into appropriate element number sets. One notable issue is the OCR's misidentification of diagram lines 

as characters, such as interpreting grid lines as the character '/'. Another issue involves the occasional 

occurrence of missing characters in the extracted text. An additional issue involves the OCR process 

capturing text in chunks, which sometimes results in errors where a single chunk contains either multiple 

element numbers or only partial numbers. To address these errors, we leveraged the standard format of 

element symbols. This format comprises two alphabet characters representing the name of member, 

followed by a four or five-digit number indicating its relative position. Thus, by considering adjacent 

strings on the diagram, we can correctly infer and adjust element numbers. By instructing GPT-4 to 

output both the original strings and inferred element numbers, we maintain the positional context of 

these numbers on the diagrams, thereby ensuring accurate identifications. This process enables the 
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matching of graph nodes with damage data. However, considering that a fully automated system may 

not always yield correct element numbers, we implemented a semi-automated system that also allows 

for manual corrections. This approach significantly enhances efficiency compared to manual processing. 

It can automatically acquire approximate element numbers and overlay separated diagram information 

into a single graph by capturing the textual strings' positions on the diagrams. 

4.2. Damage Level Prediction by Graph Transformer 

In this study, we introduce the Graph Transformer as a method for predicting element-wise integrity. 

We expect it to be capable of implicitly reflecting trends in damage transitions caused by adjacency 

relationships. Predicting soundness considering only first-order adjacency (i.e., immediate neighboring 

nodes) can be feasibly achieved through explicitly calculated transition matrices due to the limited 

number of combinations involved. However, for predictions that account for the broader impact of 

damage, including second-order adjacencies and beyond, a model like the Graph Transformer is 

essential. For our Graph Transformer, we adapted the implementation of Graphormer [14]. Graphormer, 

originally designed for graph prediction tasks, enhances the standard Transformer model [15] with 

graph-specific modules such as centrality encoding, spatial encoding, edge encoding, and special nodes. 

These additions have proven effective in classifying and regressing the overall meaning represented by 

a graph. For node-level prediction, we modified the implementation, omitting centrality encoding and 

edge encoding. Centrality encoding is typically used to highlight nodes of significance in graphs, such 

as social media networks. However, it was deemed unnecessary for our data, where all structural 

elements should be treated symmetrically regardless of their centrality degree. Similarly, edge encoding, 

useful for graphs with multiple edge types, was not required as all edges in our dataset uniformly 

represent adjacency relations. 

To evaluate the performance of predictions made by the Graph Transformer, we compared its 

accuracy with a baseline model that utilizes the percentage prediction method [16]. The baseline 

employs a transition probability matrix aggregated from transition summaries for each node and damage 

type, represented by a 5x5 matrix. In the baseline model, surrounding nodes do not influence predictions. 

Predictions exclude cases where structural integrity has been restored through repairs or other 

interventions. 

4.3. Validation of Graph Transformer by Synthetic Dataset 

This study introduces the Graph Transformer to predict damage propagation, which is based on 

implicit rules governed by adjacency relationships. To ascertain its capability, we prepared a controlled 

synthetic dataset for validation. This ensures an ideal scenario with sufficient data for the Graph 

Transformer to effectively learn the degradation process. For comparison, the baseline mentioned in 

section 4.2 is utilized. 

In the synthetic dataset, the graph comprises 16 nodes arranged in a 4x4 grid, each node connected to 

its immediate neighbors. Nodes represent structural elements, with one of three types of elements 

randomly assigned to each node. Each node is assigned two types of damage, Dam1 and Dam2, 

simulating real-world inspection records where multiple damage types are observed per element. The 

integrity of each node is graded on a scale from 'a' to 'e', similar to real data, with 'a' indicating the 

highest integrity. Initial damage values are randomly assigned. 

Three distinct datasets were created, each following the initial value settings and different damage 

progression rules, varying in the extent of adjacency influence and whether transitions are deterministic 

or probabilistic. 

Dataset 1 allows damage progression influenced only by first-order adjacent nodes. For nodes of 

element type 1 (EType1), Dam2 degrades by one stage if the Dam2 of any first-order adjacent node is 

at level 'b' or worse. Dam1 follows the same value as Dam2, but if the initial value of Dam1 is more 

severe than Dam2, it will follow the progression of Dam2. For nodes of element type 2 (EType2), Dam1 

and Dam2 assume the healthiest value among the damages of adjacent nodes. Element type 3 (EType3) 

nodes do not undergo temporal damage changes. 

Dataset 2, building upon Dataset 1, includes the influence of second-order adjacent nodes. The 

transition rule for Dam2 remains the same as in Dataset 1, but Dam1's rule is modified for EType1 

nodes. Consider a node N of EType1 that is adjacent to all three types of elements. If any adjacent 

EType1 or EType2 nodes have a damage level at or below 'b', then the Dam1 of node N worsens by one 

stage. Transition rules for other element types remain as in Dataset 1. 
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Dataset 3 extends Dataset 2 by introducing probabilistic transitions for Dam1. In Dataset 2, if a node 

of EType1 meets the condition considering up to second-order adjacencies, Dam1 would degrade with 

a 100% probability. On the other hand, in Dataset 3, we set this transition probability to 75%. Dam2 

continues to undergo the same deterministic transitions as Dataset 1 and 2. 

5. Experiment and Discussion 

5.1. Damage Prediction of Real Dataset 

In this study, we acquired graphs for 33 bridges encompassing 119 spans by interpreting diagrams 

from inspection reports. The xROAD database provides inspection records dating back to 2004, 

allowing us to obtain four or five sets of element integrity assessments for each bridge. A total of 379 

transitions were collected for this study. We allocated 90% of this data for training and 10% for testing 

to train the Graph Transformer and predict integrity transitions. The Graph Transformer was configured 

with an embedding dimension of 128 and eight transformer blocks. The embedding was done at the 

node level, representing each node's structural element type and 22 types of damage, with each damage 

type assigned an integrity assessment ranging from 'a' to 'e'. A learning rate scheduling was 

implemented, setting the maximum learning rate at 5e-5, and the model was trained over 600 epochs. 

We evaluated the model's performance on the test data using the node and damage-wise accuracy 

metric, assessing whether the predicted integrity values for each node and type of damage matched the 

ground truth. The baseline model achieved an accuracy of 0.9614, while the Graph Transformer reached 

0.9877, indicating that predictions using the Graph Transformer are more accurate. This suggests that 

considering the influence of surrounding elements can enhance the accuracy of integrity predictions. It 

is noteworthy that the damage-wise accuracy was also high for the baseline; this is primarily because 

many transitions do not result in degradation but rather maintain the current integrity level, making it 

predictable based on the current state of the focused node alone. However, for multi-step predictions, it 

is crucial to enhance accuracy to prevent the accumulation of errors, and in this regard, the methodology 

of this study proves to be valuable. 

5.2. Damage Prediction of Synthetic Dataset 

For the three types of synthetic datasets, the Graph Transformer was trained with a maximum learning 

rate of 1e-4 over 200 epochs, similarly to section 5.1. Table 1 presents the test accuracy for models 

trained on each dataset. In addition to node and damage-wise accuracy, stepwise accuracy was also 

calculated, assessing whether all damages across all nodes match in a single step transition. Given that 

the datasets were created based on rules outlined in 4.3, predictions referencing the damage of 

surrounding nodes are advantageous. The Graph Transformer, by considering the state of surrounding 

nodes, demonstrates improved performance over the baseline. For deterministic transitions, as in Dataset 

1 and 2, accurate prediction of transitions is achievable with sufficient data. Furthermore, the results 

suggest that even in scenarios where damage influences a broader range, the performance degradation 

is potentially suppressed. 

Analyzing the node and damage-wise accuracy of the Graph Transformer on Dataset 3, we find that 

deterministic transitions of Dam2 are predicted correctly in all cases, while probabilistic transitions of 

Dam1 achieved an accuracy of 0.9823. The Graph Transformer framework, utilizing information about 

various types of damage in the vicinity, can account for cross-type damage influences. For example, in  

 

Table 1. Evaluation accuracy for three synthetic datasets 

 Synthetic Dataset 1 2 3 

 

Data generation method 

Deterministically +Stochastically 

1st-order 

neighbor 
+2nd-order neighbor 

Baseline Node & damage-wise 0.9392 0.9298 0.9255 

Stepwise 0.2759 0.2057 0.1698 

Graph 

Transformer 

Node & damage-wise 0.9995 0.9999 0.9912 

Stepwise 0.9851 0.9977 0.7806 
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Dataset 1, Dam1 transitions due to the influence of Dam2. Conversely, for damages that do not influence 

each other, as in Dataset 3, the model successfully disentangles and learns their transitions 

independently. Thus, even in cases where damages with different transition rules coexist, the Graph 

Transformer is capable of appropriately learning these variations. 

6. Conclusion 

This research aimed to predict the degradation of structural elements at an individual level, employing 

a combination of OCR and GPT-4 for diagram interpretation and the creation of a predictive model 

using the Graph Transformer. While not fully automated, the diagram interpretation significantly 

reduced effort compared to manual adjacency graph creation. Predictions of integrity transitions using 

the graphs demonstrated higher accuracy compared to a baseline model that did not consider adjacency 

relations. Additionally, we examined the feasibility of applying the Graph Transformer for integrity 

prediction using synthetic datasets. The study showed that, with a sufficient amount of training data, the 

Graph Transformer could enhance prediction accuracy for data where damage is influenced by adjacent 

nodes. The results highlight the need for further refinement of the graph data creation methodology and 

call for extensive studies using large-scale real inspection data. 
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