• Title/Summary/Keyword: bridge performance level

Search Result 204, Processing Time 0.024 seconds

System-level performance of earthquake-damaged concrete bridges with repaired columns

  • Giacomo Fraioli;Yu Tang;Yang Yang;Lesley H. Sneed
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.361-372
    • /
    • 2024
  • Reinforced concrete (RC) bridge columns are typically designated as the primary source of energy dissipation for a bridge structure during an earthquake. Therefore, seismic repair of RC bridge columns has been studied extensively during the past several decades. On the other hand, few studies have been conducted to evaluate how repaired column members influence the system-level response of an RC bridge structure in subsequent earthquakes. In this study, a numerical model was established to simulate the response of two large-scale RC columns, repaired using different techniques, reported in the literature. The columns were implemented into a prototype bridge model that was subjected to earthquake loading. Incremental dynamic analysis (IDA) and fragility analysis were conducted on numerical bridge models to evaluate the efficacy of the repairs and the post-repair seismic performance of the prototype bridge that included one or more repaired columns in various locations. For the prototype bridge herein modeled, the results showed that a confinement-enhanced oriented repair would not affect the seismic behavior of the prototype bridge. Increasing the strength of the longitudinal reinforcement could effectively reduce the drift of the prototype bridge in subsequent earthquakes. A full repair configuration for the columns was the most effective method for enhancing the seismic performance of the prototype bridge. To obtain a positive effect on seismic performance, a minimum of two repaired columns was required.

Ductility and Seismic Performance of Spirally Reinforced Bridge Columns (나선철근 원형교각의 연성 및 내진성능)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.356-363
    • /
    • 2000
  • The objectives of this study are to investigate seismic performance of spirally reinforced bridge columns and to provide test result for developing improved seismic design criteria. Quasi-static test was conducted for 12 columns of which variables were transverse reinforcement ratio and spacing, longitudinal reinforcement ratio, and axial load level. Sufficient seismic performance was observed from the test for the columns with greater confinement steel amount than the requirement of the Korean Bridge Design Specification. The columns with 0.84% of the confinement steel requirement provided adequate performance under less than 0.2 of axial load level, but showed lower ductility under 0.3 of axial load level. The current provision for the region of confinement steel distribution may be non-conservative under high axial load level, therefore a modified provision is proposed.

  • PDF

Seismic performance evaluation using capacity spectrum method of bridge retrofitted with isolators (능력스펙트럼을 이용한 지진격리교량의 내진성능평가)

  • 김민지;한경봉;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.129-134
    • /
    • 2002
  • The seismic performance evaluation and retrofit process are very important for old bridge. If the result is not appropriate, a retrofit process requires. Among the various retrofit methods, this paper selects a seismic isolator and evaluates a seismic performance of bridge. In case of applied seismic isolators to bridge, it proved that seismic capacity is increased by isolators A period of bridge is increased, and a seismic response is decreased. A method of evaluation is capacity spectrum method. By means of a graphical procedure, capacity spectrum estimates a performance level of structure by comparing the capacity of structure with the demand of earthquake ground motion on the structure. The objective of this study is to compare a seismic performance of a non-seismic designed bridge and seismic isolated bridge and to verify a effect of seismic isolator

  • PDF

Implementation of a High Efficiency Grid-Tied Multi-Level Photovoltaic Power Conditioning System Using Phase Shifted H-Bridge Modules

  • Lee, Jong-Pil;Min, Byung-Duk;Yoo, Dong-Wook
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.296-303
    • /
    • 2013
  • This paper proposes a high efficiency three-phase cascaded phase shifted H-bridge multi-level inverter without DC/DC converters for grid-tied multi string photovoltaic (PV) applications. The cascaded H-bridge topology is suitable for PV applications since each PV module can act as a separate DC source for each cascaded H-bridge module. The proposed phase shifted H-bridge multi-level topology offers advantages such as operation at a lower switching frequency and a lower current ripple when compared to conventional two level topologies. It is also shown that low ripple sinusoidal current waveforms are generated with a unity power factor. The control algorithm permits the independent control of each DC link voltage with a maximum power point for each string of PV modules. The use of the controller area network (CAN) communication protocol for H-bridge multi-level inverters, along with localized PWM generation and PV voltage regulation are implemented. It is also shown that the expansion and modularization capabilities of the H-bridge modules are improved since the individual inverter modules operate more independently. The proposed topology is implemented for a three phase 240kW multi-level PV power conditioning system (PCS) which has 40kW H-bridge modules. The experimental results show that the proposed topology has good performance.

Innovative Design and Practice in Horizontal Skyscraper-ChongQing Raffles

  • Li-Gang, Zhu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.197-205
    • /
    • 2022
  • One of important design challenges in Chongqing Raffles City Plaza project is Sky Bridge structural design and its connection scheme in high level. This article systematically describes the structural system and its design and analysis methodology, with discussing the impacts on structural performance due to different connection approaches. The seismic isolation scheme in high level is innovatively adopted to the final design. Under the conditions of various load cases, the different models and assumptions are implemented. A full assessment on Sky Bridge's structural performance, seismic isolation, and its connection is conducted in terms of seismic performance based design. By co-operating with architecture, MEP and other disciplines, the structural economy index is fulfilled.

System-Level Seismic Fragility Evaluation of Bridge Considering Aging Effects (노후도를 고려한 교량의 시스템-수준 지진취약도 평가)

  • Kong, Sina;Moon, Jiho;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.149-158
    • /
    • 2022
  • As a bridge ages, its mechanical properties and structural performance deteriorate, degrading its seismic performance during a strong earthquake. In this study, the aging of piers and bridge bearings was quantified in several stages and reflected in the analysis model, enabling the evaluation of the member-level seismic fragility of these bearings. Moreover, by assuming that the failure mechanism of a bridge system is a series system, a method for evaluating the system-level seismic fragility based on the member-level seismic fragility analysis result is formulated and proposed. For piers with rubber and lead-rubber bearings (members vulnerable to aging effects), five quantitative degrees of aging (0, 5, 10, 25, and 40%) are assumed to evaluate the member-level seismic fragility. Then, based on the result, the system-level seismic fragility evaluation was implemented. The pier rather than the bridge bearing is observed to have a dominant effect on the system-level seismic fragility. This means that the seismic fragility of more vulnerable structural members has a dominant influence on the seismic fragility of the entire bridge system.

Performance-based remaining life assessment of reinforced concrete bridge girders

  • Anoop, M.B.;Rao, K. Balaji;Raghuprasad, B.K.
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.69-97
    • /
    • 2016
  • Performance-based remaining life assessment of reinforced concrete bridge girders, subject to chloride-induced corrosion of reinforcement, is addressed in this paper. Towards this, a methodology that takes into consideration the human judgmental aspects in expert decision making regarding condition state assessment is proposed. The condition of the bridge girder is specified by the assignment of a condition state from a set of predefined condition states, considering both serviceability- and ultimate- limit states, and, the performance of the bridge girder is described using performability measure. A non-homogeneous Markov chain is used for modelling the stochastic evolution of condition state of the bridge girder with time. The thinking process of the expert in condition state assessment is modelled within a probabilistic framework using Brunswikian theory and probabilistic mental models. The remaining life is determined as the time over which the performance of the girder is above the required performance level. The usefulness of the methodology is illustrated through the remaining life assessment of a reinforced concrete T-beam bridge girder.

A study on Risk-based Bridge Performance Evaluation Method for Asset Management (위험도 개념을 적용한 교량 자산관리의 성능평가방법 연구)

  • Choi, Hyun-Ho;Sun, Jong-Wan;Park, Kyung-Hoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.22-32
    • /
    • 2013
  • Generally, asset management procedure consists of exact information collection, decision of service level, analysis of aspiration level, analysis of financial condition and available budget, preparation of asset management plan, and value of modified asset. In this study, for the risk-based asset management, condition assessment and performance measuring, assessment of failure modes and risks, evaluation/selection of treatment options, and implementation of optimum solution are additionally included. For this, bridge inventory and performance measure considering risks are classified and method of quantitative/qualitative performance measure is suggested. Also, evaluation method of risk analysis for bridge asset management is suggested and basic research is carried out for applicable method of risk-based asset management. Using suggested risk procedure and method of risk-based bridge service level evaluation, it is possible to perform resonable asset management. Moreover, it is concluded that the proposed applicable method of risk-based asset management will provide a solution to contribute the development of systematical asset management for optimal decision making and prototype asset management system.

Seismic performance of prefabricated bridge columns with combination of continuous mild reinforcements and partially unbonded tendons

  • Koem, Chandara;Shim, Chang-Su;Park, Sung-Jun
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.541-557
    • /
    • 2016
  • Prefabricated bridge substructures provide new possibility for designers in terms of efficiency of creativity, fast construction, geometry control and cost. Even though prefabricated bridge columns are widely adopted as a substructure system in the bridge construction project recently, lack of deeper understanding of the seismic behavior of prefabricated bridge substructures cause much concern on their performance in high seismic zones. In this paper, experimental research works are presented to verify enhanced design concepts of prefabricated bridge piers. Integration of precast segments was done with continuity of axial prestressing tendons and mild reinforcing bars throughout the construction joints. Cyclic tests were conducted to investigate the effects of the design parameters on seismic performance. An analytical method for moment-curvature analysis of prefabricated bridge columns is conducted in this study. The method is validated through comparison with experimental results and the fiber model analysis. A parametric study is conducted to observe the seismic behavior of prefabricated bridge columns using the analytical study based on strain compatibility method. The effects of continuity of axial steel and tendon, and initial prestressing level on the load-displacement response characteristics, i.e., the strain of axial mild steels and posttensioned tendon at fracture and concrete crushing strain at the extreme compression fiber are investigated. The analytical study shows the layout of axial mild steels and posttensioned tendons in this experiment is the optimized arrangement for seismic performance.

Long term monitoring of a cable stayed bridge using DuraMote

  • Torbol, Marco;Kim, Sehwan;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.453-476
    • /
    • 2013
  • DuraMote is a remote sensing system developed for the "NIST TIP project: next generation SCADA for prevention and mitigation of water system infrastructure disaster". It is designed for supervisory control and data acquisition (SCADA) of ruptures in water pipes. Micro-electro mechanical (MEMS) accelerometers, which record the vibration of the pipe wall, are used detect the ruptures. However, the performance of Duramote cannot be verified directly on a water distribution system because it lacks an acceptable recordable level of ambient vibration. Instead, a long-span cable-stayed bridge is an ideal test-bed to validate the accuracy, the reliability, and the robustness of DuraMote because the bridge has an acceptable level of ambient vibration. The acceleration data recorded on the bridge were used to identify the modal properties of the structure and to verify the performance of DuraMote. During the test period, the bridge was subjected to heavy rain, wind, and a typhoon but the system demonstrates its robustness and durability.