• Title/Summary/Keyword: bridge information model

Search Result 307, Processing Time 0.019 seconds

Hybrid Control Strategy of Phase-Shifted Full-Bridge LLC Converter Based on Digital Direct Phase-Shift Control

  • Guo, Bing;Zhang, Yiming;Zhang, Jialin;Gao, Junxia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.802-816
    • /
    • 2018
  • A digital direct phase-shift control (DDPSC) method based on the phase-shifted full-bridge LLC (PSFB-LLC) converter is presented. This work combines DDPSC with the conventional linear control to obtain a hybrid control strategy that has the advantages of linear control and DDPSC control. The strategy is easy to realize and has good dynamic responses. The PSFB-LLC circuit structure is simple and works in the fixed frequency mode, which is beneficial to magnetic component design; it can realize the ZVS of the switch and the ZCS of the rectifier diode in a wide load range. In this work, the PSFB-LLC converter resonator is analyzed in detail, and the concrete realization scheme of the hybrid control strategy is provided by analyzing the state-plane trajectory and the time-domain model. Finally, a 3 kW prototype is developed, and the feasibility and effectiveness of the DDPSC controller and the hybrid strategy are verified by experimental results.

Damage Detection in Complex Structures using Pattern Recognition of Modal Sensitivity (모드민감도 패턴인식에 의한 복잡한 구조물의 손상발견)

  • 김정태;류연선;노리스스텁스
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.97-105
    • /
    • 1997
  • A methodology to identify a baseline modal model of a complicated 3-D structure using limited structural and modal information is experimentally examined. In the first part, a system's identification theory for the methodology to identify, baseline modal responses of the structure is outlined. Next, an algorithm is designed to build a generic finite element model of the baseline structure and to calibrate the model by using only a set of post-damage modal parameters. In the second part, the feasibility of the methodology is examined experimentally using a field-tested truss bridge far which only post-damaged modal responses were measured for a few vibration modes. For the complex 3-D bridge with many members, we analyzed to identify unknown stiffness parameters of the structure by using modal parameters of the initial two modes of vibration.

  • PDF

Evaluation for Relative Safety of RC Slab Bridge of Applying Limit State Design Code on Korean Highway Bridge (도로교설계기준 한계상태설계법을 적용한 RC슬래브교의 상대 안전도 평가)

  • Park, Jin-Woo;Hwang, Hoon-Hee;Kang, Sin-Oh;Cho, Kyung-Sik;Park, Woo-Jin
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.41-48
    • /
    • 2013
  • This paper is intended to provide the background information and justification for Korean highway bridge design code(limit state design)(2012). Limit state design method calculates reliability index and probability of failure through the analysis of the reliability of the experimental database. It has become possible to perform the economical and consistent design by evaluating the safety of a structure quantitatively. In this paper, we used the design specifications of RC slab bridge of superstructure form of Road Design Manual in Part 5 bridge built in highway bridge. This study conducted structural analysis using the method of frame structure theory, design and analysis of bridge by limit state design method, the design code including various standards and Load model applied Korean highway bridge design code limit state design(KHBDC;2012). As a result, it analyzed the effect of safety through comparison. Showing effect of improvement the safety factor and comparing the value of the result, it is determined to be capable of economical design and safety. Furthermore, limit state design method was able to determine many redundant force of cross-section compared with existing design method. It is determined that it can reduce the overall amount because of the reduction of the cross-section and girder depth.

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

A Study on the Quantitative Risk Assessment of Bridge Construction Projects (교량 공사 프로젝트의 정량적 리스크 평가에 관한 연구)

  • Ahn, Sung-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.83-91
    • /
    • 2020
  • The recent bridge construction projects is demanded more sophisticated risk management measures and loss forecasts to brace for risk losses from an increase in the trend of bridge construction. This study aims to analyze the risk factors that caused the loss of material in actual bridge construction and to develop a quantified predictive loss model, based on the past record of insurance payment by major domestic insurance companies for bridge construction projects. For the development of quantitative bridge construction loss model, the dependent variable was selected as the loss ratio, i.e., the ratio of insurance payout divided by the total project cost, while the independent variable adopted 1) Technical factors: superstructure type, foundation type, construction method, and bridge length 2) Natural hazards: typhoon and flood 3) Project information: construction period and total project cost. Among the selected independent variables, superstructure type, construction method, and project period were shown to affect the ratio of bridge construction losses. The results of this study can provide government agencies, bridge construction design and construction and insurance companies with the quantitative damage prediction and risk assessment services, using risk indicators and loss prediction functions derived from the findings of this study and can be used as a guideline for future basic bridge risk assessment development research.

Implementation of 3D Object Model considering Recycle-Design of PSC Box Girder (PSC 박스 거더의 Recycle-Design을 고려한 3차원 객체 모델 구현)

  • Cho, Sung-Hoon;Park, Jae-Guen;Lee, Heon-Min;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.325-330
    • /
    • 2010
  • In the fields of design within civil engineering, BIM based Utilization of 3D object model is still far from commercialization. In this paper, BIM based 3D object model is composed for PSC box girder, super structure of railway bridge. The basic unit of the model is part model. The part model is the minimum unit model. And it has hierarchy to reflect the characteristics of structures. Change orders of structural designer must be reflected quickly in the 3D object model. Repetitive change orders are occurred in actual construction process. To prepare that, we classified design variables to parameters. Change orders of structural designer can be reflected quickly in the 3D object model because those parameters are related with information of 3D object model. In this paper, we studied various benefits of BIM based design method with 3D object model in the fields of design within civil engineering, and proposed the efficient application method of 3D object model for PSC box girder.

A Study on Weight Estimation of Moving Vehicles using Bridge Weigh-in-Motion Technique (Bridge Weigh-in-Motion 기법을 이용한 주행차량 중량추정에 관한 연구)

  • Oh, Jun-Seok;Park, Jooyoung;Kim, Junkyeong;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In this study, the estimation of axial load and total axial load was conducted using Bridge Weigh-in-Motion(BWIM) technique which generally consists of devices for measuring the strain induced in the bridge by the vehicles. axle detectors for collecting information on vehicle velocity and axle spacing. and data acquisition equipment. Vehicle driving test for the development of the BWIM system is necessary but it needs much cost and time. In addition, it demands various driving conditions for the test. Thus, we need a numerical-simulation method for resolving the cost and time problems of vehicle driving tests, and a way of measuring bridge response according to various driving conditions. Using a bridge model reflecting the dynamic characteristic contributes to increased accuracy in numerical simulation. In this paper, we conduct a numerical simulation which reflects the dynamic characteristic of a bridge using the Bridge Weigh-in-Motion technique, and suggest overload vehicle enforcement technology.

A completely non-contact recognition system for bridge unit influence line using portable cameras and computer vision

  • Dong, Chuan-Zhi;Bas, Selcuk;Catbas, F. Necati
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.617-630
    • /
    • 2019
  • Currently most of the vision-based structural identification research focus either on structural input (vehicle location) estimation or on structural output (structural displacement and strain responses) estimation. The structural condition assessment at global level just with the vision-based structural output cannot give a normalized response irrespective of the type and/or load configurations of the vehicles. Combining the vision-based structural input and the structural output from non-contact sensors overcomes the disadvantage given above, while reducing cost, time, labor force including cable wiring work. In conventional traffic monitoring, sometimes traffic closure is essential for bridge structures, which may cause other severe problems such as traffic jams and accidents. In this study, a completely non-contact structural identification system is proposed, and the system mainly targets the identification of bridge unit influence line (UIL) under operational traffic. Both the structural input (vehicle location information) and output (displacement responses) are obtained by only using cameras and computer vision techniques. Multiple cameras are synchronized by audio signal pattern recognition. The proposed system is verified with a laboratory experiment on a scaled bridge model under a small moving truck load and a field application on a footbridge on campus under a moving golf cart load. The UILs are successfully identified in both bridge cases. The pedestrian loads are also estimated with the extracted UIL and the predicted weights of pedestrians are observed to be in acceptable ranges.

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.

A Study on IFC extended and GIS linkage using BIM as Facility Management - Case Study on Bridge and Tunnel of Infra BIM - (BIM을 유지관리로 활용하는 IFC 확장 및 GIS 연계 연구 - 기반시설 BIM의 교량, 터널 중심으로 -)

  • Chae, Jae-Hyun;Choi, Hyun-Sang;Lee, Ji-Yeong
    • Journal of KIBIM
    • /
    • v.12 no.3
    • /
    • pp.1-17
    • /
    • 2022
  • As the technology of Smart City and Digital Twin is developing, techniques to integrate BIM data of infrastructure facilities into GIS are becoming more critical. Hence, this study aims to manage BIM data representing bridge and tunnel structures through the Industry Foundation Classes (IFC) standard and to develop a method to link these IFC-compliant files to the GIS standard CityGML without loss of information. We analyze the criteria for creating BIM data for bridges and tunnels by reviewing the BIM guidelines set by each client. We use these criteria to suggest methods for data management based on InfraBIM as a specific IFC class standard. Furthermore, we perform model analysis to determine the necessary design and construction field-appropriate model process and Level of Detail (LOD). From the model analysis, we conclude that the classified BIM models can be used as base data to generate BIM models of bridges and tunnels for facility management.