• Title/Summary/Keyword: bridge fire

Search Result 54, Processing Time 0.026 seconds

Behavior of composite box bridge girders under localized fire exposure conditions

  • Zhang, Gang;Kodur, Venkatesh;Yao, Weifa;Huang, Qiao
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.193-204
    • /
    • 2019
  • This paper presents results from experimental and numerical studies on the response of steel-concrete composite box bridge girders under certain localized fire exposure conditions. Two composite box bridge girders, a simply supported girder and a continuous girder respectively, were tested under simultaneous loading and fire exposure. The simply supported girder was exposed to fire over 40% of its span length in the middle zone, and the two-span continuous girder was exposed to fire over 38% of its length of the first span and full length of the second span. A measurement method based on comparative rate of deflection was provided to predict the failure time in the hogging moment zone of continuous composite box bridge girders under certain localized fire exposure condition. Parameters including transverse and longitudinal stiffeners and fire scenarios were introduced to investigate fire resistance of the composite box bridge girders. Test results show that failure of the simply supported girder is governed by the deflection limit state, whereas failure of the continuous girder occurs through bending buckling of the web and bottom slab in the hogging moment zone. Deflection based criterion may not be reliable in evaluating failure of continuous composite box bridge girder under certain fire exposure condition. The fire resistance (failure time) of the continuous girder is higher than that of the simply supported girder. Data from fire tests is successfully utilized to validate a finite element based numerical model for further investigating the response of composite box bridge girders exposed to localized fire. Results from numerical analysis show that fire resistance of composite box bridge girders can be highly influenced by the spacing of longitudinal stiffeners and fire severity. The continuous composite box bridge girder with closer longitudinal stiffeners has better fire resistance than the simply composite box bridge girder. It is concluded that the fire resistance of continuous composite box bridge girders can be significantly enhanced by preventing the hogging moment zone from exposure to fire. Longitudinal stiffeners with closer spacing can enhance fire resistance of composite box bridge girders. The increase of transverse stiffeners has no significant effect on fire resistance of composite box bridge girders.

Designing method for fire safety of steel box bridge girders

  • Li, Xuyang;Zhang, Gang;Kodur, Venkatesh;He, Shuanhai;Huang, Qiao
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.657-670
    • /
    • 2021
  • This paper presents a designing method for enhancing fire resistance of steel box bridge girders (closed steel box bridge girder supporting a thin concrete slab) through taking into account such parameters namely; fire severity, type of longitudinal stiffeners (I, L, and T shaped), and number of longitudinal stiffeners. A validated 3-D finite element model, developed through the computer program ANSYS, is utilized to go over the fire response of a typical steel box bridge girder using the transient thermo-structural analysis method. Results from the numerical analysis show that fire severity and type of longitudinal stiffeners welded on bottom flange have significant influence on fire resistance of steel box bridge girders. T shaped longitudinal stiffeners applied on bottom flange can highly prevent collapse of steel box bridge girders towards the end of fire exposure. Increase of longitudinal stiffeners on bottom flange and web can slightly enhance fire resistance of steel box bridge girders. Rate of deflection-based criterion can be reliable to evaluate fire resistance of steel box bridge girders in most fire exposure cases. Thus, T shaped longitudinal stiffeners on bottom flange incorporated into bridge fire-resistance design can significantly enhance fire resistance of steel box bridge girders.

Enhancing fire resistance of steel bridges through composite action

  • Kodur, Venkatesh K.R.;Gil, Augusto
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.353-362
    • /
    • 2022
  • Bridge fire hazard has become a growing concern over the last decade due to the rapid increase of ground transportation of hazardous materials and resulting fire incidents. The lack of fire safety provisions in steel bridges can be a significant issue owing steel thermal properties that lead to fast degradation of steel properties at elevated temperatures. Alternatively, the development of composite action between steel girders and concrete decks can increase the fire resistance of steel bridges and meet fire safety requirements in some applications. This paper reviews the fire problem in steel bridges and the fire behavior of composite steel-concrete bridge girders. A numerical model is developed to trace the fire response of a typical bridge girder and is validated using measurements from fire tests. The selected bridge girder is composed by a hot rolled steel section strengthened with bearing stiffeners at midspan and supports. A concrete slab sitting on the top of the girder is connected to the slab through shear studs to provide full composite action. The validated numerical model was used to investigate the fire resistance of real scale bridge girders and the effect of the composite action under different scenarios (standard and hydrocarbon fires). Results showed that composite action can significantly increase the fire resistance of steel bridge girders. Besides, fire severity played an important role in the fire behavior of composite girders and both factors should be taken into consideration in the design of steel bridges for fire safety.

A numerical method for evaluating fire performance of prestressed concrete T bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Song, Chaojie;Hou, Wei;He, Shuanhai
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents a numerical method for evaluating fire performance of prestressed concrete (PC) T shaped bridge girders under combined effect of structural loading and hydrocarbon fire exposure conditions. A numerical model, developed using the computer program ANSYS, is employed to investigate fire response of PC T shaped bridge girders by taking into consideration structural inherent parameters, namely; arrangement of prestressing strands with in the girder section, thickness of concrete cover over prestressing strands, effective degree of prestress and content of prestressing strands. Then, a sequential thermo-mechanical analysis is performed to predict cross sectional temperature followed by mechanical response of T shaped bridge girders. The validity of the numerical model is established by comparing temperatures, deflections and failure time generated from fire tests. Through numerical studies, it is shown that thickness of concrete cover and arrangement of prestressing strands in girder section have significant influence on the fire resistance of PC T shaped bridge girders. Increase in effective degree of prestress in strands with triangular shaped layout and content in prestressing strands can slow down the progression of deflections in PC T shaped bridge girder towards the final stages of fire exposure, to thereby preventing sudden collapse of the girder. Rate of deflection based failure criterion governs failure in PC T shaped bridge girders under most hydrocarbon fire exposure conditions. Structural inherent parameters incorporated into sectional configuration can significantly enhance fire resistance of PC bridge girders; thus mitigating fire induced collapse of these bridge girders.

Investigation of Potential Fire Hazard Resources of Bridges on National Routes by Field and Web-based Satellite (현장 및 실내조사를 통한 일반국도교량의 화재위험요소 분석)

  • Kim, Yongjae;Kim, Seungwon;Ann, Hojune;Kong, Jungsik;Park, Cheolwoo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.105-115
    • /
    • 2017
  • PURPOSES : The occurrence of unexpected disasters, including fire events, increases as the road network becomes complicated and traffic volume increases. When a fire event occurs on and under bridges, the damage extensively influences direct damage to structures, vehicles, and human life and secondary socioeconomic issues owing to traffic blockage. This study investigated potential fire-hazard risks on bridges of the Korean national route road. METHODS : The investigation was conducted using field investigation and analysis with satellite pictures and road views from commercial websites and the Bridge Management System (BMS). From the filed investigation, various potential fire resources were identified. The satellite pictures and road views were helpful in measuring and recognizing conditions underneath bridges, stowage areas, etc. RESULTS : There are various potential fire resources underneath bridges such as piled agricultural products, parked petroleum tanks, construction equipment, and attached high-voltage cables. A total of 94.6% of bridges have underneath clearances of less than 15 m. A bridge underneath volume that can stow a potential fire hazard resource was $7,332m^3$ on average, and most bridges have about $4,000m^3$ of space. Based on the BMS data, the amounts of PSC and steel girders were 29% and 25%, respectively. CONCLUSIONS : It was found that the amount of stowed potential fire hazard resources was proportional to the underneath space of bridges. Most bridges have less than 15 m of vertical clearance that can be considered as a critical value for a bridge fire. The fire risk investigation results should be helpful for developing bridge fire-protection tools.

Evaluation of Damage on a Concrete Bridge Considering the Location of the Vehicle Fire (차량 화재 위치를 고려한 콘크리트 교량의 손상 영향 평가)

  • Park, Jang Ho;Kim, Sung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.80-87
    • /
    • 2013
  • Heat transfer analysis and thermal stress analysis for the concrete bridge was performed in order to investigate the damage of the concrete bridge by the fire of the vehicle. Changes in material properties, such as thermal conductivity, specific heat, density, elasticity, caused by temperature rise were considered. Heat transfer analysis and thermal stress analysis were performed according to the various location of the fire by ABAQUS. From the comparison of the numerical results, the degree of structural damage for the concrete bridge was investigated and considerations for the design of a concrete bridge against fire were identified.

Evaluating fire resistance of prestressed concrete bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Hou, Wei;He, Shuanhai
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.663-674
    • /
    • 2017
  • This paper presents an approach for evaluating performance of prestressed concrete (PC) bridge girders exposed to fire. A finite element based numerical model for tracing the response of fire exposed T girders is developed in ANSYS. The analysis is carried out in three stages, namely, fire temperature calculation, cross sectional temperature evaluation, and then strength, deformation and effective prestress analysis on girders exposed to elevated temperatures. The applicability of the computer program in tracing the response of PC bridge girders from the initial preloading stage to failure stage, due to combined effects of fire and structure loading, is demonstrated through a case study, and validated by test data of a scaled PC box girder under ISO834 fire condition. Results from the case study show that fire severity has a significant influence on the fire resistance of PC T girders and hydrocarbon fire is most dangerous for the girder. The prestress loss caused by elevated temperature is about 10% under hydrocarbon fire till the girder failure, which can lead to the increase in deflection of the PC girder. The rate of deflection failure criterion is suggested to determine the failure of PC T girder under fire.

Quantitative Fire Risk Assessment and Counter Plans Based on FDS and GIS for National Road Bridges (FDS와 GIS를 이용한 교량 화재 위험도의 정량적 평가 및 적용방안)

  • Ann, Ho June;Park, Cheol Woo;Kim, Yong Jae;Jang, Young Ik;Kong, Jung Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.185-195
    • /
    • 2017
  • In recent years, unexpected bridge fire accidents have increased because of augmenting the number of traffic volumes and hazardous materials by the increment in traffics and distribution business. Furthermore, in accordance with the effort of using the under space of bridges, the ratio of occupied by combustible materials like oil tanker or lorry has been increased. As a result, the occurrence of bridge fire has been growing drastically. In order to mitigate the accident of bridge fire, risk assessment of bridge fire has been studied, however, practical risk models considering safety from users' viewpoints were scarce. This study represented quantitative risk assessment model applicable to national road bridges in Korea. The primary factors with significant impacts on bridge fire accidents was chosen such as clearance height, materials of bridges, arrival time of fire truck and fire intensity. The selected factors were used for Fire Dynamics Simulation (FDS) and the peak temperature calculated by FDS in accordance with the fire duration and fire intensity. The risk assessment model in bridge fire reflected the FDS analysis results, the fire damage criteria, and the grade of fire truck arrival time was established. Response plans for bridge fire accidents according to the risk assessment output has been discussed. Lastly, distances between bridges and fire stations were calculated by GIS network analysis. Based on the suggested assessment model and methodology, sample bridges were selected and graded for the risk assessment.

Integrated fire dynamic and thermomechanical modeling of a bridge under fire

  • Choi, Joonho;Haj-Ali, Rami;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.815-829
    • /
    • 2012
  • This paper proposes a nonlinear computational modeling approach for the behaviors of structural systems subjected to fire. The proposed modeling approach consists of fire dynamics analysis, nonlinear transient-heat transfer analysis for predicting thermal distributions, and thermomechanical analysis for structural behaviors. For concretes, transient heat formulations are written considering temperature dependent heat conduction and specific heat capacity and included within the thermomechanical analyses. Also, temperature dependent stress-strain behaviors including compression hardening and tension softening effects are implemented within the analyses. The proposed modeling technique for transient heat and thermomechanical analyses is first validated with experimental data of reinforced concrete (RC) beams subjected to high temperatures, and then applied to a bridge model. The bridge model is generated to simulate the fire incident occurred by a gas truck on April 29, 2007 in Oakland California, USA. From the simulation, not only temperature distributions and deformations of the bridge can be found, but critical locations and time frame where collapse occurs can be predicted. The analytical results from the simulation are qualitatively compared with the real incident and show good agreements.

Investigation of the Fire Source in the Warehouse under Bridge using FDS Code (FDS code를 이용한 교량하부창고 화재발생원 영향분석)

  • Zi, Goang-Seup;Lee, Seung-Jung;Shin, Yeon-Ho;Shim, Jae-Won;Kim, Ji-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.663-673
    • /
    • 2011
  • In this study, we analysed the effect of the fire source in the warehouse under the bridge and the height of the bridge using FDS code. To compare accuracy of simulation results, we simulated the experimental result with unit combustibles which is heptane as well as the mock-up test. Using this method, we evaluated the fire safety of the bridge which contains spalling and strength damage of concrete as well as damage of reinforcements according to the fire source and the height of the bridge. Most of the bridges are vulnerable to spalling of concrete. The book combustion has the strongest fire intensity which is expected to damage the bridge less than 30m height in the three types of the fire sources. The bridge over the 30m height can ensure the fire safety in the case of the rubber combustion.