• Title/Summary/Keyword: bridge evaluation

Search Result 1,148, Processing Time 0.025 seconds

The Evaluation of Structural Behavior of PSC I Type Girder Bridge through Material Nonlinear FEM Analysis (비선형 FEM 해석을 이용한 PSC I Typed 거더 교량의 구조거동 분석)

  • Sim Jongsung;Ju Minkwan;Kim Gyuseon;Moon Doyoung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.528-531
    • /
    • 2004
  • Nowadays, many of PSC bridges has constructed because high performance and long span bridge is required. Therefore, it is required that the evaluation of PSC bridges which retain various structure performance. In this study, nonlinear FEM analysis was performed with two parameter, concrete compressive strength and effective prestress force which is dominant factor for evaluating structural behavior of PSC bridge. Concrete compressive strength was adapted between 30Mpa and 100Mpa and effective prestress force was used the value which is considered effective rate for time-dependant effect. In the result of this study, it was showed that concrete compressive strength and effective prestress force is important factor for evaluating structural behavior of PSC bridge.

  • PDF

Automated data interpretation for practical bridge identification

  • Zhang, J.;Moon, F.L.;Sato, T.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.433-445
    • /
    • 2013
  • Vibration-based structural identification has become an important tool for structural health monitoring and safety evaluation. However, various kinds of uncertainties (e.g., observation noise) involved in the field test data obstruct automation system identification for accurate and fast structural safety evaluation. A practical way including a data preprocessing procedure and a vector backward auto-regressive (VBAR) method has been investigated for practical bridge identification. The data preprocessing procedure serves to improve the data quality, which consists of multi-level uncertainty mitigation techniques. The VBAR method provides a determinative way to automatically distinguish structural modes from extraneous modes arising from uncertainty. Ambient test data of a cantilever beam is investigated to demonstrate how the proposed method automatically interprets vibration data for structural modal estimation. Especially, structural identification of a truss bridge using field test data is also performed to study the effectiveness of the proposed method for real bridge identification.

Effect of Equivalent SDOF Methods for Seismic Evaluation of Bridge Structures (교량구조물의 지진응답에 대한 등가단자유도 방법의 영향)

  • Nam, Wang-Hyun;Song, Jong-Keol;Chung, Yeong-Hwa
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.316-323
    • /
    • 2005
  • The capacity spectrum method (CSM) can be used for the evaluation of inelastic maximum response of structures and has been recently used in the seismic design using the incorporation of pushover analysis and response spectrum method. To efficiently evaluate seismic performance of multi-degree-of freedom (MDOF) bridge structures, it is important that the equivalent response of MDOF bridge structures be calculated. In this study to calculate the equivalent response of MDOF system, equivalent responses are obtained by the using Song method, N2 method and Calvi method. Also, these are applied the CSM method and seismic performance of bridge according to the ESDOF method are compared and evaluated.

  • PDF

Risk Evaluation of Longitudinal Cracking in Concrete Deck of Box Girder Bridge (콘크리트 박스거더 교량 바닥판의 종방향 균열 위험성 정가)

  • Kim, Eui-Sung
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.84-90
    • /
    • 2008
  • The occurrence of longitudinal cracking in concrete deck of box girder bridge is affected by many factors, but the most important factors are the shrinkage and thermal gradient of deck slabs. In this study, therefore, the tensile stresses at the bottom of deck were calculated from the experimental data(autogeneous shrinkage, drying shrinkage, and thermal gradient of deck slab). Also, the possibility of longitudinal cracks at bottom of deck was estimated. For this purpose, full-scale box girder segments have been fabricated and tested. The thermal gradients and shrinkage strains of deck slabs were measured after placement of concrete. Also, analytic program was conducted for the evaluation of longitudinal cracking in bridge deck considering differential shrinkage induced from non-uniform moisture distributions in concrete.

A Study on Performance Improvements about Duct of Smoke Control System Combined with Air-Conditioning Equipment (공기조화설비 겸용 제연설비 덕트의 성능개선을 위한 연구)

  • Oh, Teakhum;Park, Chanseok
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.67-72
    • /
    • 2021
  • To ensure the safety and functionality of a railroad bridge, maintaining the integrity of the bridge via continuous structural health monitoring is important. However, most structural integrity monitoring methods proposed to date are based on modal responses which require the extracting process and have limited availability. In this paper, the applicability of the existing damage identification method based on free-vibration reponses to time-domain deflection shapes due to moving train load is investigated. Since the proposed method directly utilizes the time-domain responses of the structure due to the moving vehicles, the extracting process for modal responses can be avoided, and the applicability of structural health evaluation can be enhanced. The feasibility of the presented method is verified via a numerical example of a simple plate girder bridge.

Fatigue Reliability Evaluation of an In-service Steel Bridge Using Field Measurement Data (현장계측데이터를 활용한 공용 중 강교량의 피로 신뢰도평가)

  • Lee, Sang Hyeon;An, Lee-Sak;Park, Yeun Chul;Kim, Ho-Kyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.599-606
    • /
    • 2022
  • Strain gauges and the bridge weigh-in-motion (BWIM) method are the representative field measurement methods used for fatigue evaluationsof a steel bridge-in-service. For a fatigue reliability evaluation to assess fatigue damage accumulation, the effective stress range and the number of stress cycles applied as the fatigue details can be estimated based on the AASHTO Manual for Bridge Evaluations with the field measurement data of the target bridge. However, the procedure for estimating the effective stress range and the stress cycles from field measurement data has not been explicitly presented. Furthermore, studies that quantitatively compare differences in fatigue evaluation results according to the field measurement data type or processing method used are still insufficient. Here, a fatigue reliability evaluation is conducted using strain and BWIM data that are measured simultaneously. A frame model and a shell-solid model were generated to examine the effect of the accuracy of the structural analysis model when using BWIM data. Also, two methods of handling BWIM data when estimating the effective stress range and average daily cycles are defined. As a result, differences in evaluation results according to the type of field measurement data used, the accuracy of the structural analysis model, and the data handling method could be quantitatively confirmed.

Evaluation of Comfort Limit on High Speed Railway Bridge Vibration Considering Passenger's Comfort (승차감을 고려한 고속철도 교량 진동사용성 평가)

  • Chin, Won-Jong;Kwark, Jong-Won;Choi, Eun-Suk;Kang, Jae-Yoon;Kim, Sung-Tae;Yoon, Hye-Jin;Kim, Nam-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.829-835
    • /
    • 2011
  • This paper aims for proposed the deflection limit on vibration serviceability of high-speed railway bridges considering passenger's comfort when a train passes a railway bridge. The vertical acceleration signals of passenger cars obtained from test were compared with them from the bridge-train transfer function by riding KTX. The deflections by KTX of seven high speed railway bridges were assumed as sine and haversine wave. The deflection limit on vibration serviceability of high-speed railway bridges considering passenger's comfort when a train passes a railway bridge duration can be expanded using bridge-train transfer function and bridge comfort limit considering serviceability due to bridge vibration. And it was compared to other allowable deflection limits of railway bridge design specifications.

  • PDF

Performance Analysis of Bridge using Structural Health Monitoring: Seong-Su Bridge Case-study

  • Kaloop, Mosbeh R.;Ban, Woo Hyun;Hu, Jong Wan
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • The performance evaluation of existing structures is important to study the safety of those structures with changing the loads over the lifetime of structures. Therefore, this study aims at evaluating the Seong-Su bridge, Seoul, Korea, using structural health monitoring (SHM) system. The static and dynamic tests are used to assess the behavior of the bridge. The statistical and wavelet analyses are used to demonstrate the behavior of the bridge in the time and frequency domains. The previous SHM results are used to assess the bridge performance. The results of this study show that the bridge performance under static and dynamic loads is safe in time and frequency domains.

A study on Risk-based Bridge Performance Evaluation Method for Asset Management (위험도 개념을 적용한 교량 자산관리의 성능평가방법 연구)

  • Choi, Hyun-Ho;Sun, Jong-Wan;Park, Kyung-Hoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.3
    • /
    • pp.22-32
    • /
    • 2013
  • Generally, asset management procedure consists of exact information collection, decision of service level, analysis of aspiration level, analysis of financial condition and available budget, preparation of asset management plan, and value of modified asset. In this study, for the risk-based asset management, condition assessment and performance measuring, assessment of failure modes and risks, evaluation/selection of treatment options, and implementation of optimum solution are additionally included. For this, bridge inventory and performance measure considering risks are classified and method of quantitative/qualitative performance measure is suggested. Also, evaluation method of risk analysis for bridge asset management is suggested and basic research is carried out for applicable method of risk-based asset management. Using suggested risk procedure and method of risk-based bridge service level evaluation, it is possible to perform resonable asset management. Moreover, it is concluded that the proposed applicable method of risk-based asset management will provide a solution to contribute the development of systematical asset management for optimal decision making and prototype asset management system.

Seismie Performance Evaluation of Reinforced Concrete Bridge Piers Supported by Laminated Rubber Bearings (적층고무받침을 사용한 철근콘크리트 교각의 내진성능평가)

  • 김태훈;최정호;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.63-72
    • /
    • 2004
  • The purpose of this study is to evaluate seismic performance of reinforced concrete bridge piers supported by laminated rubber bearings. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Seismic isolator element is developed to predict behaviors of laminated rubber bearings. The proposed numerical method for seismic performance evaluation of reinforced concrete bridge piers supported by laminated rubber bearings is verified by comparison with reliable experimental results.