• Title/Summary/Keyword: bridge construction

Search Result 1,919, Processing Time 0.026 seconds

Development of Loss Model Based on Quantitative Risk Analysis of Infrastructure Construction Project: Focusing on Bridge Construction Project (인프라건설 프로젝트 리스크 분석에 따른 손실 정량화 모델 개발 연구: 교량프로젝트를 중심으로)

  • Oh, Gyu-Ho;Ahn, Sungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.208-209
    • /
    • 2022
  • This study aims to analyze the risk factors caused by object damage and third-party damage loss in actual bridge construction based on past insurance premium payment data from major domestic insurers for bridge construction projects, and develop a quantitative loss prediction model. For the development of quantitative bridge construction loss model, the dependent variable was selected as the loss ratio, and the independent variable adopted 1) Technical factors: superstructure type, foundation type, construction method, and bridge length 2) Natural hazards: flood anf Typhoon, 3) Project information: total construction duration, total cost and ranking. Among the selected independent variables, superstructure type, construction method, and project period were shown to affect the ratio of bridge construction losses, while superstructure, foundation, flood and ranking were shown to affect the ratio of the third-party losses.

  • PDF

An Approach for Bridge Construction Cost Allocation Considering Traffic Load and Traffic Capacity (교통량과 교통하중을 고려한 교량건설비용의 할당)

  • Lee, Dong-Ju;Hwang, In-Keuk
    • IE interfaces
    • /
    • v.17 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • The objective of bridge construction cost allocation is to distribute in a fair and rational manner the bridge construction costs among those vehicles using the bridge. In most bridge construction cost allocation studies, bridge construction costs are mainly distributed according to traffic load(gross vehicle weight), without any consideration of bridge capacity requirements(the number of lanes). In this paper, a bridge cost allocation method for considering both traffic capacity and traffic loads is developed. The proposed method is based on cooperative game theory, particularly two concepts known as the Aumann-Shapley (A-S) value and Shapley value. This method can help to analyze the impact of traffic capacity costs. By applying the proposed method to an example, traffic capacity cost is found to be high so that traffic capacity should be considered to allocate the bridge construction costs to vehicle classes in a more equitable manner.

New Technical Method in Incheon Bridge (인천대교와 신기술들)

  • Yoon, Man-Keun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.39 no.6 s.189
    • /
    • pp.42-48
    • /
    • 2006
  • This is briefly to introduce about design and construction method newly adopted in Incheon bridge construction site. The Incheon Bridge Project are divided into 3 parts, that is Cable Stayed Bridge. Viaduct Bridge and Approach Bridge. In this paper, we will describe overview and construction sequence of each kind part.

  • PDF

Impact of Bridge Construction on County Population in Georgia

  • Jeong, M. Myung;Kang, Mingon;Jung, Younghan E.
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1017-1023
    • /
    • 2022
  • Past research shows that the construction of new infrastructure accelerates economic growth in the region by attracting more people and commodities. However, the previous studies only considered large-scale infrastructures such as sea-cross bridges and channel tunnels. There is a paucity of literature on regional infrastructure and its impact on socio-economic indicators. This paper explores the impact of new bridge construction on the human population, particularly focusing on regional bridges constructed during the 2000s in the state of Georgia. The human population at a county level was selected as a single socio-economic factor to be evaluated. A total of 124 cases were investigated as to whether the emergence of a new bridge affected the population change. The interrupted time series analysis was used to statistically examine the significance of population change due to the construction by treating each new bridge as an intervention event. The results show that, out of the 124 cases, the population of 67 cases significantly increased after the bridge construction, while the population of 57 cases was not affected by the construction at a significance level of 0.05. The 124 cases were also analyzed by route type, functional class, and traffic volume, but the results revealed, unlike large-scale infrastructure, that no clear evidence was found that a new bridge would bring an increase in the human population at a county level.

  • PDF

The Assessment of the Risk Index in the Bridge Construction by the Accident Analysis (재해분석을 이용한 교량공사 공종별 위험지수 평가)

  • Lee, Myeong-Gu;Jeong, Myeong-Jin;Kim, Kyu-Dong;Paik, Seung-Kook;Cho, Soon-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.144-149
    • /
    • 2008
  • The purpose of this study is to present the standard risk index according to work type in the bridge construction without regard to the bridge type. The bridge construction cases were researched on the actual condition. construction accidents were investigated from 1998 to 2005. In this paper, we developed a standard risk index for efficient bridge construction safety system.

Experimental Study for Development of the Steel-Concrete Composite Rigid-Frame Bridge Integrated with PS Bar (PS 강봉으로 일체화된 강합성 라멘교의 개발을 위한 실험연구)

  • Ahn, Young-Soo;Chung, Jee-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.50-61
    • /
    • 2012
  • In recent years, various research and developments to introduce composite bridges of new concept have been performed. The types of integral bridge and portal rigid frame bridge are having advantages in bridge maintenance and structural efficiency by eliminating expansion joints and bridge supports. However, the detail of typical girder-abutment connection has problems such as complexity of construction and increase of the construction cost. A new type of bridge, called prestress integral composite girder(PIC girder) bridge, is proposed in this study, which decreases the cost of construction and improves the efficiency of construction by simplifying the detail of construction for girder-abutment connection. PIC girder bridge has the connection detail in which the steel girder and the abutment are integrated by using the PS bar installed in the connection. In this study, finite element analysis and mock-up load test are conducted to evaluate the propriety of design, the effective of fabrication and structural safety for PIC girder bridge. The adequacy of the PIC giredr bridge is verified by the results of static/dynamic load test and finite element analyses.

Construction stage analysis of three-dimensional cable-stayed bridges

  • Atmaca, Barbaros;Ates, Sevket
    • Steel and Composite Structures
    • /
    • v.12 no.5
    • /
    • pp.413-426
    • /
    • 2012
  • In this paper, nonlinear static analysis of three-dimensional cable stayed bridges is performed for the time dependent materials properties such as creep, shrinkage and aging of concrete and relaxation of cable. Manavgat Cable-Stayed Bridge is selected as an application. The bridge located in Antalya, Turkey, was constructed with balanced cantilever construction method. Total length of the bridge is 202 m. The bridge consists of one $\ddot{e}$ shape steel tower. The tower is at the middle of the bridge span. The construction stages and 3D finite element model of bridge are modeled with SAP2000. Large displacement occurs in these types of bridges so geometric nonlinearity is taken into consideration in the analysis by using P-Delta plus large displacement criterion. The time dependent material strength and geometric variations are included in the analysis. Two different finite element analyses carried out which are evaluated with and without construction stages and results are compared with each other. As a result of these analyses, variation of internal forces such as bending moment, axial forces and shear forces for bridge tower and displacement and bending moment for bridge deck are given with detailed. It is seen that construction stage analysis has a remarkable effect on the structural behavior of the bridge.

Development of Bridge Scour Manual (교량세굴 평가 기술매뉴얼 개발)

  • Park, Jae-Hyeon;Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.517-524
    • /
    • 2004
  • The leading cause of bridge failures is scouring bed material from around bridge foundations. Many advanced countries such as U.S.A., U.K., the Netherlands and New Zealand have developed and revised their own bridge scour manuals fit for their field conditions. In Korea, researches for reducing bridge failures during floods have concentrated on analysis, laboratory test and countermeasure of bridge scour during the last ten years. however no comprehensive manual for evaluating bridge scour and for identifying the conditions of bridge foundations has been provided yet. In this study, a new bridge scour manual is developed for the accurate evaluation of bridge scour, which reflects domestic field conditions with various streambed materials. The SRICOS method and the Erodibility Index Method are suggested for fine-grained soils and weathered rocks, respectively. In addition, bridge scour analysis algorithms are developed for field engineers to estimate bridge scour depth and to evaluate the susceptibility of bridge scour with ease.

  • PDF

WIRELESS SENSOR NETWORK BASED BRIDGE MANAGEMENT SYSTEM FOR INFRASTRUCTURE ASSET MANAGEMENT

  • Jung-Yeol Kim;Myung-Jin Chae;Giu Lee;Jae-Woo Park;Moon-Young Cho
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1324-1327
    • /
    • 2009
  • Social infrastructure is the basis of public welfare and should be recognized and managed as important assets. Bridge is one of the most important infrastructures to be managed systematically because the impact of the failure is critical. It is essential to monitor the performance of bridges in order to manage them as an asset. But current analytical methods such as predictive modeling and structural analysis are very complicated and difficult to use in practice. To apply these methods, structural and material condition data collection should be performed in each element of bridge. But it is difficult to collect these detailed data in large numbers and various kinds of bridges. Therefore, it is necessary to collect data of major measurement items and predict the life of bridges roughly with advanced information technologies. When certain measurement items reach predefined limits in the monitoring bridges, precise performance measurement will be done by detailed site measurement. This paper describes the selection of major measurement items that can represent the tendency of bridge life and introduces automated bridge data collection test-bed using wireless sensor network technology. The following will be major parts of this paper: 1) Examining the features of conventional bridge management system and data collection method 2) Mileage concept as a bridge life indicator and measuring method of the indicator 3) Test-bed of automated and real-time based bridge life indicator monitoring system using wireless sensor network

  • PDF

Estimation Model for Approximate Construction Quantities of Suspension Bridge in Early Stage (사업기획단계에서의 현수교의 물량추정을 위한 모델연구)

  • Park, Weon-Tae;Chun, Kyoung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.24-29
    • /
    • 2015
  • Bridge construction cost estimates have generally been conducted by using historial unit-price(per meter or square meter). The traditional estimating method based on unit-price references can never completely reflect the specialty of cable supported bridge. In this paper, we have developed the system for supporting the approximate construction cost and the quantity estimation based on 3D model information in the pre-project planning phase of 3-span continuous suspension bridge with 2-pylons. First of all, we'd analyzed the design information (such as structural design report, blueprint and quantity) and the real cost data from the existing suspension bridges and derived the design variables of the bridges. We developed the BIM wizard that generates a suspension bridge model parametrically based on derived design variables. The principle material quantities of suspension bridge are calculated directly from 3-dimensional bridge model built by using the BIM wizard. We have established the system that the construction cost can be estimated more specific than the traditional estimating method.