• Title/Summary/Keyword: bridge collapse

Search Result 134, Processing Time 0.026 seconds

Analytical Method to Determine the Dynamic Amplification Factor due to Hanger Cable Rupture of Suspension Bridges (현수교 행어 케이블 파단에 의한 동적확대계수의 해석적 결정법)

  • Na, Hyun Ho;Kim, Yuhee;Shin, Soobong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.301-308
    • /
    • 2014
  • A suspension bridge is a type of bridge in which the beam is suspended by load-bearing cables. There are two classifications: the self-anchored suspension bridge has the main cable anchored to the bridge girders, and the earth-anchored suspension bridge has the main cable anchored to a large anchorage. Although a suspension bridge is structurally safe, it is prone to be damaged by various actions such as hurricanes, tsunamis and terrorist incidents because its cables are exposed. If damage to a cable eventually leads to the cable rupture, the bridge may collapse. To avoid these accidents, studies on the dynamic behavior of cable bridges due to the cable rupture have been carried out. Design codes specify that the calculated DAF (dynamic amplification factor) should not exceed a certain value. However, it has been difficult to determine DAFs effectively from dynamic analysis, and thus no systematic approach has been suggested. The current study provides a guideline to determine DAFs reliably from the dynamic analysis results and summarizes the results by applying the method to an earth-anchored suspension bridge. In the study, DAFs were calculated at the location of four structural parts, girders, pylons, main cable and hangers, with variations in the rupture time.

Experimental Study for Seismic Performance Evaluation with Existing RC Bridge Piers (기존 실물 원형 철근콘크리트 교각의 내진 성능 평가를 위한 실험적 연구)

  • Lee, Dae-Hyoung;Kim, Hoon;Chung, Young-Soo;Lee, Jae-Hoon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.258-265
    • /
    • 2002
  • The recent earthquakes in worldwide have caused extensive damage to highway bridge structures. In particular, it has been demonstrated that concrete columns with inadequate lateral reinforcement contributed to the catastrophic collapse of many bridges. The poor detailing of the starter bars in these columns compounded the problem of seismic deficiency. Therefore, this study has been performed to verify the effect of lap spliced longitudinal steel and confinement steel type for the seismic behavior of reinforced concrete bridge piers. Eight concrete columns were constructed with existing scale as diameter, 1.2m and height, 4.8m. 4 confinement steel types were adopted for seismic performance evaluation. All specimens were rested under inelastic cyclic loading while simultaneously subjected to a constant axial load. The longitudinal steel lap-splice is highly effective in seismic performance deterioration of reinforced concrete bridge piers.

  • PDF

The analysis of flow over the bridge using preconditioned Navier-Stokes code (예조건화 Navier-Stokes 코드를 이용한 교각 유동해석)

  • Yoo, Il-Yong;Lee, Seung-Soo;Park, Si-Hyong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.13-16
    • /
    • 2008
  • After the collapse of the Tacoma bay bridge at Tacoma Washington, the accurate prediction of aerodynamics became crucial to the sound design of bridges. CFD(Computational Fluid Dynamics) becomes important tool for the prediction on wind effects on the bridge due to the recent development of CFD. The usage of CFD is further prompted by the advantages in using CFD, such as low-cost and fast feed-back of design. In this paper, an unsteady compressible Reynolds averaged Navier-Stokes code is used for the computation of the flow over bridges. Coakley's ��q-${\omega}$ �� two-equation turbulence model is used for the turbulent eddy viscosity. For accurate and stable computations, the local preconditioning method is adapted to the code. Aerodynamic characteristics of a couple bridges are presented to show the validity and the accuracy of the method.

  • PDF

Ship Collision Risk of Suspension Bridge and Design Vessel Load (현수교의 선박충돌 위험 및 설계박하중)

  • Lee, Seong Lo;Bae, Yong Gwi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.11-19
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of suspension bridge. Method II in AASHTO LRFD bridge design specifications which is a more complicated probability based analysis procedure is used to select the design vessel for collision impact. From the assessment of ship collision risk for each bridge pier exposed to ship collision, the design impact lateral strength of bridge pier is determined. The analysis procedure is an iterative process in which a trial impact resistance is selected for a bridge component and a computed annual frequency of collapse(AF) is compared to the acceptance criterion, and revisions to the analysis variables are made as necessary to achieve compliance. The acceptance criterion is allocated to each pier using allocation weights based on the previous predictions. This AF allocation method is compared to the pylon concentration allocation method to obtain safety and economy in results. This method seems to be more reasonable than the pylon concentration allocation method because AF allocation by weights takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. The design vessel for each pier corresponding with the design impact lateral strength obtained from the ship collision risk assessment is then selected. The design impact lateral strength can vary greatly among the components of the same bridge, depending upon the waterway geometry, available water depth, bridge geometry, and vessel traffic characteristics. Therefore more researches on the allocation model of AF and the selection of design vessel are required.

Seismic responses of composite bridge piers with CFT columns embedded inside

  • Qiu, Wenliang;Jiang, Meng;Pan, Shengshan;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.343-355
    • /
    • 2013
  • Shear failure and core concrete crushing at plastic hinge region are the two main failure modes of bridge piers, which can make repair impossible and cause the collapse of bridge. To avoid the two types of failure of pier, a composite pier was proposed, which was formed by embedding high strength concrete filled steel tubular (CFT) column in reinforced concrete (RC) pier. Through cyclic loading tests, the seismic performances of the composite pier were studied. The experimental results show that the CFT column embedded in composite pier can increase the flexural strength, displacement ductility and energy dissipation capacity, and decrease the residual displacement after undergoing large deformation. The analytical analysis is performed to simulate the hysteretic behavior of the composite pier subjected to cyclic loading, and the numerical results agree well with the experimental results. Using the analytical model and time-history analysis method, seismic responses of a continuous girder bridge using composite piers is investigated, and the results show that the bridge using composite piers can resist much stronger earthquake than the bridge using RC piers.

The Bridge Suspended by Cables and the History of Investigation of the Equation Induced from It (케이블에 의하여 매달려 있는 현수교 방정식의 발견과 연구의 흐름)

  • Nam Hyewon;Choi Q-Heung
    • Journal for History of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.107-116
    • /
    • 2005
  • A suspension bridge is an example of a nonlinear dynamical system, especially systems with the so called jumping nonlinearity. The fact that we deal with a serious and topical problem is demonstrated for example by the collapse of the Tacoma Narrow suspension bridge. So it would be very contributive to determine under what conditions a similar situation cannot occur and find out safe parameters of the bridge construction. In this paper, we show various possibilities how to model the behaviour of suspension bridge. Then we introduce our own results concerning existence and uniqueness of time-periodic solutions.

  • PDF

A Study on The Bed Scour at Stream Bridge during Flood - In the case of Jeongjang Bridge in Gurye - (홍수시 소하천 교량에서의 하상세굴 연구 - 구례 정장교를 중심으로 -)

  • Jung, Jae-Sung;Chung, Mahn;Kim, Min-Hwan
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1075-1080
    • /
    • 2002
  • The hydrological frequency of the flood in July 2000 at Seosi stream basin in Gurye and the bed scour of the stream channel were estimated to investigate the bed scour related with Jeongjang bridge collapse. The storm over the basin in July 2000, 303mm/day was 103year frequency rainfall and the equivalent flood was 2580cms. As the results of 100year and 30year flood application, flood level 30.78~31.38m and mean velocity 3.79~4.03m/s were appeared. And the purification project of Seosi stream increased the velocity of the section near to Jeongjang bridge by the improvement of conveyance at the downstream. The local scour at pier was the major factor of bed scour at Jeongjang bridge site and the total scour at pier No.6 was increased from 2.32m to 2.45m by the purification project.

Seismic performance enhancement of a PCI-girder bridge pier with shear panel damper plus gap: Numerical simulation

  • Andika M. Emilidardi;Ali Awaludin;Andreas Triwiyono;Angga F. Setiawan;Iman Satyarno;Alvin K. Santoso
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.69-82
    • /
    • 2024
  • In the conventional seismic design approach for a bridge pier, the function of the stopper, and shear key are to serve as mechanisms for unseating prevention devices that retain and transmit the lateral load to the pier under strong earthquakes. This frequently inflicts immense shear forces and bending moments concentrated at the plastic hinge zone. In this study, a shear panel damper plus gap (SPDG) is proposed as a low-cost alternative with high energy dissipation capacity to improve the seismic performance of the pier. Therefore, this study aimed to investigate the seismic performance of the pre-stressed concrete I girder (PCI-girder) bridge equipped with SPDG. The bridge structure was analyzed using nonlinear time history analysis with seven-scaled ground motion records using the guidelines of ASCE 7-10 standard. Consequently, the implementation of SPDG technology on the bridge system yielded a notable decrease in maximum displacement by 41.49% and a reduction in earthquake input energy by 51.05% in comparison to the traditional system. This indicates that the presence of SPDG was able to enhance the seismic performance of the existing conventional bridge structure, enabling an improvement from a collapse prevention (CP) level to an immediate occupancy (IO).

Probabilistic Analysis for Longitudinal Displacement due to Skew Angle of Bridges under Scenario Earthquakes (모의 지진하중에 의한 교량의 사가에 따른 축방향변위에 대한 확률론적 해석)

  • 전환석;이대형;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.553-558
    • /
    • 1998
  • Since the mid of the 20th century in the world, it has been observed that the number of minor or moderate earthquake motions tend to be increased year by year. Owing to the topographical condition, moreover, large numbers of skew bridges have been constructed for the requirements of more than DB18 ton bridge in Korea. It has been also observed from foreign countries that lots of superstructures collapse in bridge were occurred in previous earthquakes, inclusive of 1995 Kobe earthquake. This is caused by a relative displacement between the upper and lower structure of bridge by the earthquake and the rotation with respect to the vertical axis of skew bridges, which were subjected to and earthquake motion. In this study, the probabilistic analysis of unseating failure of skew bridges under scenario earthquake has been carried out by evaluating the longitudinal displacement of skew bridges.

  • PDF

A Demolition Experiment of a Scaled Model for a Concrete Box Girder Bridge (콘크리트 박스거더 교량의 발파해체를 위한 교량모형 해체실험)

  • Yang, Hyung-Sik;Jang, Hyong-Doo;Ko, Young-Hun
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.103-108
    • /
    • 2011
  • Along with series of concrete block experiments, a demolition experiment was conducted for a scaled concrete box girder bridge to investigate collapse and blast behavior. Tri nitro toluene (TNT), the standard explosive for strength was adopted as concussion charge. The result show that demolition was caused by not only direct detonation pressures at charging spots but also blast pressures at inner wall of concrete box girder.