• Title/Summary/Keyword: bridge assessment

Search Result 608, Processing Time 0.026 seconds

Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures (확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석)

  • Jin, He-Shou;Song, Jong-Keol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.269-272
    • /
    • 2008
  • The seismic fragility curves of a structure represents the probability of exceeding the prescribed structural damage given various levels of ground motion intensityand the seismic fragility curve is essential to evaluation of structural performance and assessment of risk and loss of structures. The purpose of this paper is to develop seismic fragility functions for bridge structures in Koreaby reviewing those of advanced countries. Therefore, at first, we investigated development conditions of the seismic fragility functions. And the next highway bridges in Korea are classified into a number of categories and several typical bridges are selected to estimate seismic fragilities for using this analysis method in Korea. Finally, fragility curves for PSC Box girder bridge are estimated. The results show that the bridge classification and damage state play an important role in estimation of seismic damage and seismic fragility analysis for bridge structures.

  • PDF

Risk Analysis of Suspension Bridge by a Linear Adaptive Weighted Response Surface Method (선형 적응적 가중 응답면기법에 의한 현수교의 위험도 분석)

  • Cho, Tae Jun;Kim, Lee Hyeon;Cho, Hyo Nam
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.93-104
    • /
    • 2008
  • study deals with the reliability assesment for the 5-year phases of a suspension bridge construction in Korea. The main objectives of this study are; (1) the evaluation of the reliability of a suspension bridge by considering an ultimate limit state for the fracture of main cable wires, (2) the determination of the critical phases among 28 construction stages for the deck erection, and (3) the evaluation of the reliability of the limit state for the erection control during construction stages. The research and the design of the suspension bridge have been focused on the state of construction mainly based on empirical data. Based on the recent survey of the distribution of accidents in Korean railways, over 80% of the accidents related to the uncertainties in human error, planning, design, materials and loads during construction have ben reported before the completion of construction. While many researches have evaluated the safety of bridges, the uncertainties in the construction phases have not been well treated in a guidelines or a specifications. An improved adaptive response surface method is used for the risk assessment in the construction phases of the target suspension bridge.

Design Vessel Selection of Maritime Bridges using Collision Risk Allocation Model (충돌위험분배모델을 이용한 해상교량의 설계선박 선정)

  • Lee, Seong-Lo;Lee, Byung Hwa;Bae, Yong-Gwi;Shin, Ho-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.123-134
    • /
    • 2006
  • In this study ship collision risk analysis is performed to determine the design vessel for collision impact analysis of the maritime bridge. Method II which is a probability based analysis procedure is used to select the design vessel for collision impact from the risk analysis results. The analysis procedure, an iterative process in which a computed annual frequency of collapse(AF) is compared to the acceptance criterion, includes allocation method of acceptance criterion of annual frequency of bridge component collapse. The AF allocation by weights seems to be more reasonable than the pylon concentration allocation method because this AF allocation takes the design parameter characteristics quantitatively into consideration although the pylon concentration allocation method brings more economical results when the overestimated design collision strength of piers compared to the strength of pylon is moderately modified. From the assessment of ship collision risk for each bridge pier exposed to ship collision, a representative design vessel for all bridge components is selected. The design vessel size varies much from each other in the same bridge structure depending upon the vessel traffic characteristics.

Environmental Factors on the Use of Wildlife Bridge by Striped Field Mouse (Apodemus agraius) (등줄쥐의 육교형 생태통로 이용에 미치는 환경 특성)

  • Gi-Yeong Jeong;Ji-Hoon Lee;Yong-Won Mo
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.5
    • /
    • pp.337-346
    • /
    • 2023
  • Although wildlife bridge are built as a way to reduce habitat fragmentation caused by road construction, there is still a lot of debate about their effectiveness. Monitoring methods such as footprint traps and camera traps are used evaluate the effectiveness of wildlife bridge, but there is a limit to evaluate of effectiveness. In this study, the degree of use the wildlfe bridge was surveyed by striped field mouse that is likely use the wildlife bridge and surrounding as a habitat with capture-mark-recapture method.(Apodemus agraius). The distance and route of movement were identified by connecting the capture points, and the environmental factors on the use of the wildlife bridge implemented a generalized linear model(GLM) with the capture number of captured as a dependent variable. Consequently of capture, no individuals crossing the wildlife bridge, striped field mouse use the wildlife bridge as a habitat.The environmental factors affecting the use of mice were vegetation cover(1~2m, 2~8m, over 8m), vegetation construction, maximum diameter at breast height were positively correlated and slope was nagatively correlated. In conclusion, it is expected that the effectiveness of the wildlife bridge will be further improved by planting shrubs and trees and preventing high slope and cut slope increasing the utilization of the rat, such as being used as a food source in the ecosystem.

Energy-balance assessment of shape memory alloy-based seismic isolation devices

  • Ozbulut, O.E.;Hurlebaus, S.
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.399-412
    • /
    • 2011
  • This study compares the performance of two smart isolation systems that utilize superelastic shape memory alloys (SMAs) for seismic protection of bridges using energy balance concepts. The first isolation system is a SMA/rubber-based isolation system (SRB-IS) and consists of a laminated rubber bearing that decouples the superstructure from the bridge piers and a SMA device that provides additional energy dissipation and re-centering capacity. The second isolation system, named as superelastic-friction base isolator (S-FBI), combines the superelastic SMAs with a flat steel-Teflon bearing rather than a laminated rubber bearing. Seismic energy equations of a bridge structure with SMA-based isolation systems are established by absolute and relative energy balance formulations. Nonlinear time history analyses are performed in order to assess the effectiveness of the isolation systems and to compare their performance. The program RSPMatch 2005 is employed to generate spectrum compatible ground motions that are used in time history analyses of the isolated bridge. Results indicate that SRB-IS produces higher seismic input energy, recoverable energy and base shears as compared to the S-FBI system. Also, it is shown that combining superelastic SMAs with a sliding bearing rather than rubber bearing significantly reduce the amount of the required SMA material.

Seismic Analysis for Performance Assessment of Precast Segmental PSC Bridge Columns (프리캐스트 세그먼트 PSC 교각의 성능평가를 위한 지진해석)

  • Kim, Tae-Hoon;Park, Se-Jin;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.15-27
    • /
    • 2009
  • The purpose of this study is to investigate the seismic behavior of precast segmental PSC bridge columns. For the analysis of reinforced concrete structures, a computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. To represent the interaction between tendon and concrete of a prestressed concrete member, a bonded or unbonded tendon element based on the finite element method is used. A joint element is modified to predict the inelastic behaviors of segmental joints. The solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The proposed numerical method gives a realistic prediction of seismic behavior throughout the input ground motions for numerical examples.

Seismic fragility performance of skewed and curved bridges in low-to-moderate seismic region

  • Chen, Luke;Chen, Suren
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.789-810
    • /
    • 2016
  • Reinforced concrete (RC) bridges with both skew and curvature are pretty common in areas with complex terrains. Existing studies have shown skewed and/or curved bridges exhibit more complicated seismic performance than straight bridges, and yet related seismic risk studies are still rare. These bridges deserve more studies in low-to-moderate seismic regions than those in seismic-prone areas. This is because for bridges with irregular and complex geometric designs, comprehensive seismic analysis is not always required and little knowledge about actual seismic risks for these bridges in low-to-moderate regions is available. To provide more insightful understanding of the seismic risks and the impact from the geometric configurations, analytical fragility studies are carried out on four typical bridge designs with different geometric configurations (i.e., straight, curved, skewed, skewed and curved) in the mountain west region of the United States. The results show the curved and skewed geometries can considerably affect the bridge seismic fragility in a complex manner, underscoring the importance of conducting detailed seismic risk assessment of skewed and curved bridges in low-to-moderate seismic regions.

Removable shear connector for steel-concrete composite bridges

  • Suwaed, Ahmed S.H.;Karavasilis, Theodore L.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.107-123
    • /
    • 2018
  • The conception and experimental assessment of a removable friction-based shear connector (FBSC) for precast steel-concrete composite bridges is presented. The FBSC uses pre-tensioned high-strength steel bolts that pass through countersunk holes drilled on the top flange of the steel beam. Pre-tensioning of the bolts provides the FBSC with significant frictional resistance that essentially prevents relative slip displacement of the concrete slab with respect to the steel beam under service loading. The countersunk holes are grouted to prevent sudden slip of the FBSC when friction resistance is exceeded. Moreover, the FBSC promotes accelerated bridge construction by fully exploiting prefabrication, does not raise issues relevant to precast construction tolerances, and allows rapid bridge disassembly to drastically reduce the time needed to replace any deteriorating structural component (e.g., the bridge deck). A series of 11 push-out tests highlight why the novel structural details of the FBSC result in superior shear load-slip displacement behavior compared to welded shear studs. The paper also quantifies the effects of bolt diameter and bolt preload and presents a design equation to predict the shear resistance of the FBSC.

Dynamic Characteristics and Compressive Stress of Multi-Layered Stone Masonry Model (석벽돌 적층모형의 압축응력과 동적특성)

  • Lee, SungMin;Shon, HoWoong;Lee, SooGon
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.1
    • /
    • pp.31-40
    • /
    • 2004
  • When surveying the cultural heritages especially in the case of stone structures, preserving their original state is of primary importance. For the effective assessment of survey results of stone structure, the dynamic characteristics of that system should be considered. Dynamic characteristics of stone masonry structures depend on several factors such as coefficients of friction, contact conditions, and number of layers of bonding stones. These factors can be estimated by using the dynamic analysis results. This paper describes a method for natural frequency determination of traditional stone arch bridge subjected to compressive force. For this purpose, multi-layered granite brick models of for arch bridge were made and fundamental frequencies corresponding increasing axial forces were measured.

  • PDF

Development of Uncertainty-Based Life-Cycle Cost System for Railroad Bridges (불확실성을 고려한 철도 교량의 LCC분석 시스템 개발)

  • Cho, Choong-Yuen;Sun, Jong-Wan;Kim, Lee-Hyeon;Cho, Hyo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1158-1164
    • /
    • 2007
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedentedly in civil engineering practice. Accordingly, it is expected that the life-cycle cost in the 21st century will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, so far, most researches in Koreahave only focused on roadway bridges, which are not applicable to railway bridges. Thus, this paper presents the formulation models and methods for uncertainty-based LCCA for railroad bridges consideringboth objective statistical data available in the agency database of railroad bridges management and subjective data obtained form interviews with experts of the railway agency, which are used to anew uncertainty-based expected maintenance/repair costs including lifetime indirect costs. For reliable assessment of the life-cycle maintenance/repair costs, statistical analysis considering maintenance history data and survey data including the subjective judgments of railway experts on maintenance/management of railroad bridges, are performed to categorize critical maintenance items and associated expected costs and uncertainty-based deterioration models are developed. Finally, the formulation for simulation-based LCC analysis of railway bridges with uncertainty-based deterioration models are applied to the design-decision problem, which is to select an optimal bridge type having minimum Life-Cycle cost among various railway bridges types such as steel plate girder bridge, and prestressed concrete girder bridge in the basic design phase.

  • PDF