• Title/Summary/Keyword: breeding strategy

Search Result 116, Processing Time 0.027 seconds

Establishment of normal reference intervals in serum biochemical parameters of domestic sows in Korea

  • Kim, Dongyub;Kim, Hwan-Deuk;Son, Youngmin;Kim, Sungho;Jang, Min;Bae, Seul-Gi;Yun, Sung-Ho;Kim, Seung-Joon;Lee, Won-Jae
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.261-269
    • /
    • 2021
  • Because sows are industrially vital for swine production, monitoring for their health or disorder status is important to ensure high reproductive performance. Especially, ambient temperature changes in different season, especially during summer, are directly influenced to the reproductive performance of sows. Although the serum biochemical parameters are widely applied in the veterinary medicine with wide ranges for the physiological process, the values are also influenced by several factors such as age, breed, gender, and stress. In addition, domestic sows in Korea-specific reference interval (RI) for serum biochemistry has not been established yet. Therefore, the present study was aimed to evaluate seasonal variation of RIs in the serum biochemistry in domestic sows in Korea at different seasons and to establish normal RIs using a RI finding program (Reference Value Advisor). Significant difference (p < 0.05) on the different seasons were identified in several serum biochemical parameters including BUN, CRE, GGT, GLU, ALB, TP, LDH and Na in sows. Therefore, we further established RIs, specific in domestic sows in Korea regardless of season. The established RIs based on the serum biochemical values provide a baseline for interpreting biochemical results in the domestic sows in Korea, regardless of seasonal effect. It may contribute to develop a strategy for better reproductive performance by improving breeding management practice and evaluating health of pig herds, which facilitate to avert the economic loss in summer infertility in sows.

Multi-environment Trial Analysis for Yield-related Traits of Early Maturing Korean Rice Cultivars

  • Seung Young Lee;Hyun-Sook Lee;Chang-Min Lee;Su-Kyung Ha;Youngjun Mo;Ji-Ung Jeung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.252-252
    • /
    • 2022
  • Genotype-by-environment interaction (GEI) refers to the comparative response of genotypes to different environments conditions. Thus, understanding GEI is a fundamental component for selecting superior genotypes for breeding programs. The significance of utilizing early maturing cultivars not only provides flexibility in planting dates, but also serves as an effective strategy to reduce methane emission from the paddy fields. In this study, we conducted multi-environment trials (METs) to evaluate yield-related traits such as culm length, panicle length, panicle number, spikelet per plant, and thousand grain weight. A total of eighty-one Korean commercial rice cultivars categorized as early maturing cultivars, were cultivated in three regions, two planting seasons for two years. The genotype main effect plus genotype-by-environment interaction (GGE) biplot analysis of yield-related traits and grain yield explained 70.02-91.24% of genotype plus GEI variation, and exhibited various patterns of mega-environment delineation, discriminating ability, representativeness, and genotype rankings across the planting seasons and environments. Moreover, simultaneous selection using weighted average of absolute scores from the singular value decomposition (WAASB) and multi-trait stability index (MTSI) revealed six highly recommended genotypes with high stability and crop productivity. The winning genotypes under specific environment can be utilized as useful genetic materials to develop regional specialty cultivars, and recommended genotypes can be used as elite climate-resilient parents to improve yield-potential and reduce methane emission as part to accomplish carbon-neutrality.

  • PDF

Strategy for Bio-Diversity and Genetic Conservation of Forest Resources in Korea (생물종(生物種) 다양성(多樣性) 및 삼림유전자원(森林遺傳資源) 보존(保存) 전략(戰略))

  • Park, Young Goo
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.2
    • /
    • pp.191-204
    • /
    • 1994
  • Due to its topographic complexities and various climatical condition, Korea exhibits diverse forest types. Dominant tree species in this zone are Quercus spp., Betula spp., Zelkova spp., Fraxinus spp., Pinus densiflora, Pinus koraiensis, and Pinus thunbergii ete. Genetic conservation in forest species in Korea there are three ways ; one is in situ, other is ex situ and third is in-facility conservation. In situ conservation include that are the present status of conservation of rare and endangered flora and ecosystem, the reserved forest, the national and provincial park, and the gene pool of natural forests. Ex situ conservation means to be established the new forest from in situ forest stands, progeny and provenance test populations, seed orchard and clone banks, and gene conservation in-facility. As a tool for low temperature storage, several aspects on in vitro system were studied ; (1) establishment of in vitro cultures from juvenile and/or rejuvenated tissues, (2) induction of multiple shoots from the individual micropropagules, (3) elongation of the proliferated shoots. Studies on cold storage for short-and long-term maintenance of in vitro cultures under $4^{\circ}C$ in the refrigerator were conducted. For the cryopreservation at $-196^{\circ}C$, various factors affecting survivability of the plant materials are being examined. The necessity of gene conservation of forest trees is enlarged not only to increase the adaptability for various environments but also to gain the breeding materials in the future. For effective gene conservation of forest trees, I would like to suggest followings ; 1. Forest stands reserved for other than the gene conservation purposes such as national parks should be investigated by botanical and gene-ecological studies for selecting bio-diversity and gene conservation stands. 2. Reserved forest for gene pool should be extented both economically important tree spp. and non-economical species. 3. Reserved forest for progeny test and clone bank should be systematically investigated for the use of Ex situ forest gene conservation. 4. We have to find out a new methodology of genetic analysis determining the proper and effective size of subpopulation for in situ gene conservation. 5. We should develop a new tree breeding systems for successful gene conservation and utilization of the genetic resources. 6. New method of in-facility gene conservation using advanced genetic engineering should be developed to save time and economic resources. 7. For the conservation of species with short-life span of seed or shortage of knowledge of seed physiology, tissue culture techniques will be played a great role for gene conservation of those species. 8. It is are very useful conservation not only of genes but of genotypes which were selected already by breeding program. 9. Institutional and administrative arrangements including legistlation must be necessarily taken for gene conservation of forest trees. 10. It is national problems for conservation of forest resources which have been rapidly destroyed because of degenerating environmental condition and of inexperienced management system of bio-diversity and gene conservation. 11. In order to international cooperation for exchanging data of bio-diversity and gene conservation, we should connect to international net works as soon as possible.

  • PDF

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.

Breeding for Improvement of Fatty Acid Composition in Rapeseed XXI. Oil Quality of Fatty Acid Improved Varieties in Cheju Area and Future Production Strategy (유채 지방산조성 개량육종에 관한 연구 제21보 지방산조성 개량품종 보급지역에서의 유질과 금후대책)

  • Lee, Jung-Il;Jung, Dong-Hee;Ryu, Su-Noh
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.2
    • /
    • pp.165-170
    • /
    • 1994
  • High quality rapeseed cultivars including Nojeokchae, Yeongsanyuchae Halla-yuchae and Tamrayuchae have been released and recommended as a zero erucic acid variety to Cheju farmers for 13 years, where is a major rapeseed production area in korea. However, rapeseeds produced in Cheju island in 1992 and 1993 contained 47.7% and 37.0% of erucic acid respectively resulting in poor quality oil being not adequate for edible oil. It was considered that the zero erucic acid varieties did not have an opportunity to be cultivated in Cheju island by farmers living in the Island. Thus, the new rapeseed varieties without erucic acid should be bred and recommended to the farmers of southern area of Korea as a multiple cropping crop just after rice harvest, and for large scale mechanized and labour-serving rapeseed culture. The change of rapeseed breeding goal would be desirable for fatty acid composition improvement of rapeseed to develop varieties adaptable to southern part of Korea, and to produce rapeseed oil directly used as an edible oil safely.

  • PDF

Genetic Diversity and Population Structure of Korean Mint Agastache rugosa (Fisch & Meyer) Kuntze (Lamiaceae) Using ISSR Markers

  • Kang, Man Jung;Sundan, Suresh;Lee, Gi An;Ko, Ho Cheol;Chung, Jong Wook;Huh, Yun Chan;Gwag, Jae Gyun;Oh, Se Jong;Kim, Yeon Gyu;Cho, Gyu Taek
    • Korean Journal of Plant Resources
    • /
    • v.26 no.3
    • /
    • pp.362-369
    • /
    • 2013
  • Agastache rugosa, a member of the mint family (Labiatae), is a perennial herb widely distributed in East Asian countries. It is used in traditional medicine for the treatment of cholera, vomiting, and miasma. This study assessed the genetic diversity and population structures on 65 accessions of Korean mint A. rugosa germplasm based on inter simple sequence repeat (ISSR) markers. The selected nine ISSR primers produced reproducible polymorphic banding patterns. In total, 126 bands were scored; 119 (94.4%) were polymorphic. The number of bands generated per primer varied from 7 to 18. A minimum of seven bands was generated by primer 874, while a maximum of 18 bands was generated by the primer 844. Six primers (815, 826, 835, 844, 868, and 874) generated 100% polymorphic bands. This was supported by other parameters such as total gene diversity ($H_T$) values, which ranged from 0.112 to 0.330 with a mean of 0.218. The effective number of alleles ($N_E$) ranged from 1.174 to 1.486 with a mean value of 1.351. Nei's genetic diversity (H) mean value was 0.218, and Shannon's information index (I) mean value was 0.343. The high values for total gene diversity, effective number of alleles, Nei's genetic diversity, and Shannon's information index indicated substantial variations within the population. Cluster analysis showed characteristic grouping, which is not in accordance with their geographical affiliation. The implications of the results of this study in developing a strategy for the conservation and breeding of A. rugosa and other medicinal plant germplasm are discussed.

Genetic Mapping of QTLs that Control Grain Characteristics in Rice (Oryza sativa L.) (벼의 낱알 특성에 관여하는 양적형질유전자좌 분석)

  • Wacera, Home Regina;Safitri, Fika Ayu;Lee, Hyun-Suk;Yun, Byung-Wook;Kim, Kyung-Min
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.925-931
    • /
    • 2015
  • We performed a molecular marker-based analysis of quantitative trait loci (QTLs) for traits that determine the quality of the appearance of grains, using 120 doubled-haploid (DH) lines developed by another culture from the F1 cross between ‘Cheongcheong’ (Oryza sativa L. ssp. Indica) and ‘Nagdong’ (Oryza sativa L. ssp. Japonica). The traits studied included length, width, and thickness of the grains, as well as length-to-width ratio and 1,000-grain weight. The objective of this study was to determine the genetic control of these traits in order to formulate a strategy for improving the appearance of this hybrid. Within the DH population, five traits exhibited wide variation, with mean values occurring within the range of the two parents. Three QTLs were identified for grain length on chromosomes 2, 5, and 7. Three QTLs were mapped for grain width on chromosome 2: qGW2-1, qGW2-2, and qGW2-3. Six chromosomes were identified for the grain length-to-width ratio; four of these were on chromosome 2, whereas the other two were on chromosomes 7 and 12. One QTL influencing 1,000-grain weight was identified and located on chromosome 8. The results presented in the present study should facilitate rice-breeding, especially for improved hybrid-rice quality.

Therapeutic Strategy for the Prevention of Pseudorabies Virus Infection in C57BL/6 Mice by 3D8 scFv with Intrinsic Nuclease Activity

  • Lee, Gunsup;Cho, SeungChan;Hoang, Phuong Mai;Kim, Dongjun;Lee, Yongjun;Kil, Eui-Joon;Byun, Sung-June;Lee, Taek-Kyun;Kim, Dae-Hyun;Kim, Sunghan;Lee, Sukchan
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.773-780
    • /
    • 2015
  • 3D8 single chain variable fragment (scFv) is a recombinant monoclonal antibody with nuclease activity that was originally isolated from autoimmune-prone MRL mice. In a previous study, we analyzed the nuclease activity of 3D8 scFv and determined that a HeLa cell line expressing 3D8 scFv conferred resistance to herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV). In this study, we demonstrate that 3D8 scFv could be delivered to target tissues and cells where it exerted a therapeutic effect against PRV. PRV was inoculated via intramuscular injection, and 3D8 scFv was injected intraperitoneally. The observed therapeutic effect of 3D8 scFv against PRV was also supported by results from quantitative reverse transcription polymerase chain reaction, southern hybridization, and immunohistochemical assays. Intraperitoneal injection of 5 and $10{\mu}g$ 3D8 scFv resulted in no detectable toxicity. The survival rate in C57BL/6 mice was 9% after intramuscular injection of 10 $LD_{50}$ PRV. In contrast, the 3D8 scFv-injected C57BL/6 mice showed survival rates of 57% ($5{\mu}g$) and 47% ($10{\mu}g$). The results indicate that 3D8 scFv could be utilized as an effective antiviral agent in several animal models.

Biotypes of the Brown Planthopper, Nilaparvara lugens (Stal) (벼멸구의 생태형)

  • Saxena R.C.;Barrion A.A.
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.52-66
    • /
    • 1983
  • The brown planthopper, N. lugens (Stal), has become a serious pest of rice in tropical Asia during the last decade. At high pest density, its feeding damage causes 'hopperburn' or complete wilting and drying of the rice plant. It also transmits grassy and ragged stunt virus diseases. The estimated losses caused by the pest in tropical Asia exceed $US\$300$ millions. While cultivation of resistant rice varieties has proved to be highly effective against the pest, their long-term stability is threatened because of the evolution of prolific biotypes which can destroy these varieties. At present, identification of biotypes is based principally on the differential reactions of host rice varieties to the pest and on host-mediated behavioral and physiological responses of the pest. Recent findings of morphological differences in adult rostrum, legs, and antennae, body parts that possess receptors for host plant location and discrimination, and cytological differences in N. lugens populations maintained as stock cultures strongly complement other biotype studies. So far, three N. lugens biotypes have been identified in the Philippines. Biotype I can survive on and damage varieties that do not carry and genes for resistance, while Biotype 2 survives on resistant varieties carrying Bph 1 gene and Biotype 3 on varieties carrying gene bph 2. However, none of these biotypes can survive on varieties with genes Bph 3 or bph 4. Several varieties which are resistant in the Philippines are susceptible in India and Sri Lanka as the South Asian biotypes of N. lugens are more virulent than Southeast Asian biotypes. To monitor the pest biotypes in different geographical regions and to identify new sources of resistance, an International Brown Planthopper Nursery has been established in many cooperating countries. The evolution of biotypes is an exceedingly complex process which is governed by the interactions of genetic and biological factors of the pest populations and the genetic makeup of the cultivated varieties. While the strategy for sequential release of varieties with major resistance genes has been fairly successful so far, the monegenic resistance of these varieties makes them vulnerable to the development of the pest biotypes. Therefore, present breeding endeavors envisage utilizing both major and minor resistance genes for effective control of the pest.

  • PDF

Infection patterns of porcine reproductive and respiratory syndrome virus by serological analysis on a farm level (혈청학적 분석을 통한 돼지 생식기호흡기증후군의 농장단위 감염유형)

  • Park, Choi-Kyu;Yoon, Ha-Chung;Lee, Chang-Hee;Jung, Byeong-Yeal;Lee, Kyoung-Ki;Kim, Hyun-Soo
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.1
    • /
    • pp.67-73
    • /
    • 2008
  • Porcine reproductive and respiratory syndrome (PRRS) is the most economically important viral infectious disease in pig populations worldwide. This study was conducted to better understand the epidemic and dynamics of PRRS virus (PRRSV) on each farm and to evaluate the risk of PRRSV infection in Korea. Interviews with pig farmers were carried out to obtain PRRS vaccination programmes in 60 pig farms throughout Korea. Blood samples were also collected from the 59 pig farms to investigate outbreak patterns of each farm. Vaccination against PRRS was performed in 16.7% farms for breeding pigs and 8.3% of farms for nursery pigs. According to the seroepidemiological analysis, 56 (94.9%) out of 59 farms were considered to be affected by PRRSV infection. The results revealed that 68.9% of sows tested were seroconverted and interestingly, gilt herds had the highest seropositive rate (73%), suggesting that gilts may play a key role in PRRSV transmission in sow herds. Among the PRRS-affected piglet herds, 33 (55.9%), 14 (23.7%) and 6 (10.2%) farms were initially infected with PRRSV during the weaning, suckling and nursery period, respectively. It seems likely, therefore, that PRRSV infection predominantly occurs around the weaning period in piglet herds. Based on antibody seroprevalence levels in both sow and piglet groups, we were able to classify patterns of PRRSV infection per farm unit into 4 categories; category 1 (stable sow groups and non-infected piglet groups), category 2 (unstable sow groups and non-infected piglet groups), category 3 (stable sow groups and infected piglet groups), and category 4 (unstable sow groups and infected piglet groups). Our data suggested that 43 (72.9%) farms were analysed to belong to category 4, which is considered to be at high-risk for PRRS outbreak. Taken together, our information from this study will provide insight into the establishment of an effective control strategy for PRRS on the field.