• Title/Summary/Keyword: breccia content

Search Result 12, Processing Time 0.03 seconds

Classification of Shear Strength according to Breccia Content in Fault Core (단층각력 함량에 따른 전단강도의 분류)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.167-181
    • /
    • 2020
  • Analysis of variance (ANOVA) and multiple comparison analysis were performed for shear strengths categorized by breccia content of 5 wt.% (Case-I), 10 wt.%, (Case-II) and 15 wt.% (Case-III) in fault cores. The relationship between breccia contetnt and shear strength was quantitatively classified by calculating the mean and standard deviation of shear strength for each population in each case and then the grouping the breccia contents that had a statistically similar effect on the dispersion of shear strength. As a result, shear strength was clearly classified into group 1 (breccia content of 0-15 wt.%) and group 2 and 3 (breccia coantent of 15-30 wt.% and 30 wt.% or more) in Case-III. Shear strength of the standard line at breccia content of 15 wt.% were determined to be 43.6 kPa, 77.6 kPa, and 118.6 kPa at each normal stress (54 kPa, 108 kPa, and 162 kPa), respectively. In addition, the distribution range of cohesions is 0-43.6 kPa at breccia content of 15 wt.% or less, and 0-70.0 kPa at 15 wt.% or more. Distribution range of friction angles is 0-45.7 ° at breccia content of 15 wt.% or less, and 16.7-57.5 ° at 15 wt.% or more.

An Aanalysis of the Geotechnical Characteristics of the Uncemented Breccia at Kyeongju District (경주 지역 미고결 각력층의 공학적 특성 분석)

  • Yun Sung-Hak;Lee Kun;Sha Sang-Ho;Park Sei-Joo;Ra Il-woong;Cheon Yoon-chul;Cho Nam Jun
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.667-672
    • /
    • 2005
  • The uncemented breccia consisted of conglomerate and breccia, which are not originated from volcanic clastics, shows wide variation of engineering properties depending on the characteristics of matrix of the uncemented breccia. These uncemented breccia have breccia and matrix irregularly distributed according to their depth and position. Clay minerals are also included in the matrix of these uncemented breccia, so they are expected to show expansive behavior and weakness against weathering process. In this study, the volumetric ratio of breccia on the cores had been calculated using digital image processing technique (performed on recovered core box and their sections). The 3-axial compressional strength test had been done with a shaping of rapid cooling method, and the shear strength (c, ${\phi}$) of uncemented breccia due to the breccia content had been calculated by applying BIMROCK model curve suggested by Goodman. A reliable analysis on the engineering properties of uncemented breccia had been also possible by using borehole density logging and borehole loading test for the accurate determination of the unit weight and the deformation constants deformation modulus.

  • PDF

Comparative Numerical Analysis of Elastic Modulus according to Distribution and Content of Breccia in Fault Core (수치해석을 이용한 단층핵 내 각력의 배열 형태 및 함량에 따른 탄성계수의 비교·분석)

  • Yun, Hyun-Seok;Song, Gyu-Jin;Moon, Seong-Woo;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.387-393
    • /
    • 2015
  • Fault breccia, produced by fracturing and comminution of host rock during fault activity, is a common component within fault cores. Fault breccia may display a preferred orientationin accordance with the sense of motion on the fault. Here we use a numerical analysis technique to study the effects of the distribution and content of breccia in fault core on the elastic moduli. The analytical models are grouped into those in which breccias display a preferred orientation within fault core and those in which breccias are randomly oriented. The breccia compositions considered here are granite and shale, and the breccia contents are 10 wt%, 20 wt%, and 30 wt%. Our results show that for all the cases considered, differences in the deformation moduli fall within the range 0.1%~1.1% and differences in the elastic moduli fall within the range 0.02~0.4 MPa. Thus, the distribution and content of fault breccia have almost no effect on the elastic moduli.

Relationship between Shear Strength and Component Content of Fault Cores (단층핵 구성물질의 함량과 전단강도 사이의 상관성 분석)

  • Yun, Hyun-Seok;Moon, Seong-Woo;Seo, Yong-Seok
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.65-79
    • /
    • 2019
  • In this study, simple regression and multiple regression analyses were performed to analyze the relationship between breccia and clay content and shear strength in fault cores. The results of the simple regression analysis performed for each rock (andesitic rock, granite, and sedimentary rock) and three levels of normal stress (${\sigma}_n=54$, 108, 162 kPa), reveal that the shear strength is proportional to breccia content and inversely proportional to clay content. Furthermore, as normal stress increases, the shear strength is influenced by the change in component content, correlating more strongly with clay content than with breccia content. In the multiple regression analysis, which considers both breccia and clay content, the shear strength is found to be more sensitive to the change in breccia content than to that of clay. As a result, the most suitable regression model for each rock is proposed by comparing the coefficients of determination ($R^2$) estimated from the simple regression analysis with those from the multiple regression analysis. The proposed models show high coefficients of determination of $R^2=0.624-0.830$.

Physical Properties and Friction Characteristics of Fault Cores in South Korea (단층핵의 물리적 특성과 마찰 특성의 상관관계 분석)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.71-85
    • /
    • 2020
  • To understand behavior of fault cores in the field of geotechnical and geological engineering, we present an investigation of the physical properties (breccia and clay contents, unit weight, porosity, and water content) and friction characteristics (internal friction angle and cohesion) of fault cores, in granitic, sedimentary, and volcanic rocks in South Korea. The breccia contents in the fault cores are positively correlated with unit weight and negatively correlated with clay content, porosity, and water content. The inter-quartile ranges of internal friction angles and cohesion calculated from direct shear tests are 16.7-38.1° and 2.5-25.3 kPa, respectively. The influence of physical properties on the friction characteristics of the fault cores was analyzed and showed that in all three rock types the internal friction angles are positively correlated with breccia content and unit weight, and negatively correlated with clay content, porosity, and water content. In contrast, the cohesions of the fault cores are negatively correlated with breccia content and unit weight, and positively correlated with clay content, porosity, and water content.

Basic Properties of Stones used for Cooking Utensils and Their Leaching Characteristics for Heavy Metal Elements (조리용구용 석재의 기초 특성과 중금속 원소의 용출 특성)

  • 진호일;김신자;김복란;민경원
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.347-353
    • /
    • 2002
  • Dominant rock types of stones used presently for cooking utensils in Korea are pyroxenite, breccia and biotite diorite. Pyroxenite and biotite diorite relatively abundant in mafic minerals have higher specific gravities of 3.0 than breccia of 2.5. Breccia shows the highest absorption (2.9%) among three stones used as cooking utensils and pH value of three stone types shows the alkaline range of 9.7 to 9.9. Among the studied stones used for cooking utensils, biotite diorite is the most durable against abrasion and has the highest strength and therefore, it is expected to be used effectively for the longest time except for other specific causes. Heavy metals such as Cu, Pb, Co, Cr and Ni were leached lower than their detection limit (0.1 ppm) regardless of reaction time and initial pH value of solution. But the leached contents of Fe are various with rock types and leaching conditions and those by acidic solution are generally 1.8 to 31 times higher than those by neutral solution. Breccia and biotite diorite show the highest leached content of Fe in cases of neutral and acidic solutions, respectively. Standard criteria of leached heavy metals and macrominerals should be studied thoroughly to utilize stones for cooking utensils of high quality which are harmless to the human body. Also it is required to examine mon detailed abiochemical properties of various stone types used for cooking utensils.

Structural Geology in the Western Area of the Poun Coal Field (보은(報恩) 탄전(炭田) 서부지역(西部地域)의 지질구조(地質構造))

  • An, Jung Ryeol;Chang, Tae Woo
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.287-299
    • /
    • 1991
  • The study area is mainly composed of metasedimentary rocks which are included in Ogchon, Choson and Pyongan Groups. Because of thrust faults which are developed in this area, a coal bearing formation is repeatedly distributed two times, and Choson Group is thrusted over Pyongan Group. Deformation in this area was taken place in a series of three phases ($D_1$, $D_2$ and $D_3$) ; $D_1$ was most intense whereas $D_3$ was weakest. Thrust faults developed in the upper curst duringD2 produced cataclastic rocks and fault breccia,truncating regional slaty cleavage and earlier folds which were formed during $D_1$ stage. The quartz microstructures of metapsammitic rocks in Choson and Pyongan Groups suggest that dislocation creep mechanism predominated early in fabric development, afterwards deformation mechanism was transfered to pressure solution which intensified the earlier fabrics. According to strain analysis using quartz grains and quartz aggregate grains, the strain magnitude(Es) of Pyongan Group represents larger values than that of Choson Group due to the contrast of constituent minerals, the size of original quartz grains and matrix content. Apparent flattening type in strain pattern appears in the whole area. It is suggested that the relationship between Ogchon Group and Choson Group may be thrust contact.

  • PDF

Mineralogy and Geochemistry of Minerals from the Jinwon Gold-silver Deposit, Republic of Korea (진원 금-은 광상에서 산출되는 광물들의 산출상태 및 화학조성)

  • Yoo, Bong Chul
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.491-504
    • /
    • 2016
  • Jinwon Au-Ag deposit is located in the Uijin gun which is southeast 300 km from Seoul. The deposit area consists of mainly Precambrian Hongjesa granite, which occurs as porphyroblastic texture, medium grain and composed of quartz, feldspar and mica. This deposit consists of four parallel hydrothermal quartz veins that fill NE oriented fractures in Precambrian Hongjesa granite. The grade of quartz veins contain from 3.0 to 21.4 g/t (average 6.4 g/t) gold and from 5.0 to 252.0 g/t (average 117.9 g/t) silver, respectively. They vary from 0.2 m to 0.6 m (average 0.3 m) in thickness and extend to about 200 m in strike length. Quartz veins occur as massive, network, cavity, breccia, crustiform, comb and zonal textures. Wallrock alteration has silicification, sericitization, pyritization and argillitization. The mineralogy of the quartz veins consists of quartz, arsenopyrite, cassiterite, pyrite, sphalerite, chalcopyrite, galena, electrum, tetrahedrite, canfieldite, argentite, Ag-Sb-S mineral, Mn-Fe-O mineral, Pb-O mineral and Pb-P-Cl-O mineral(chloro-pyromorphite). Chemical compositions of minerals from this deposit are as followed; Fe/Fe+Mg of sericite is from 0.32 to 0.71, As content of arsenopyrite ranges from 27.91 to 30.33 atomic %, FeS content of sphalerite range from 9.77 to 16.76 mole %, Ag content of electrum is from 29.42 to 37.41 atomic % and Ag content of tetrahedrite range from 32.17 to 36.53 wt.%, respectively. Baased on mineralogy and chemical compositions of minerals from Jinwon Au-Ag deposit, deposition of minerals was caused by a change in temperature, oxygen fugacity($fO_2$) and sulfur fugacity($fS_2$) from the near neutral hydrothermal fluid evolved by reaction with wallrock.

Chemical Behaviors of Elements and Mineral Compositions in Fault Rocks from Yangbuk-myeon, Gyeongju City, Korea (경주시 양북면 단층암의 원소거동과 광물조성 특성)

  • Song, Su Jeong;Choo, Chang Oh;Chang, Chun-Joong;Jang, Yun Deuk
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.137-151
    • /
    • 2013
  • This study is focused on element behaviors and mineral compositions of the fault rock developed in Yongdang-ri, Yangbuk-myeon, Gyeongju City, Korea, using XRF, ICP, XRD, and EPMA/BSE in order to better understand the chemical variations in fault rocks during the fault activity, with emphasis on dependence of chemical mobility on mineralogy across the fault zone. As one of the main components of the fault rocks, $SiO_2$ shows the highest content which ranges from 61.6 to 71.0%, and $Al_2O_3$ is also high as having the 10.8~15.8% range. Alkali elements such as $Na_2O$ and $K_2O$ are in the range of 0.22~4.63% and 2.02~4.89%, respectively, and $Fe_2O_3$ is 3.80~12.5%, indicating that there are significant variations within the fault rock. Based on the chemical characteristics in the fault rocks, it is evident that the fault gouge zone is depleted in $Na_2O$, $Al_2O_3$, $K_2O$, $SiO_2$, CaO, Ba and Sr, whereas enriched in $Fe_2O_3$, MgO, MnO, Zr, Hf and Rb relative to the fault breccia zone. Such chemical behaviors are closely related to the difference in the mineral compositions between breccia and gouge zones because the breccia zone consists of the rock-forming minerals including quartz and feldspar, whereas the gouge zone consists of abundant clay minerals such as illite and chlorite. The alteration of the primary minerals leading to the formation of the clay minerals in the fault zone was affected by the hydrothermal fluids involved in fault activity. Taking into account the fact that major, trace and rare earth elements were leached out from the precursor minerals, it is assumed that the element mobility was high during the first stage of the fault activity because the fracture zone is interpreted to have acted as a path of hydrothermal fluids. Moving toward the later stage of fault activity, the center of the fracture zone was transformed into the gouge zone during which the permeability in the fault zone gradually decreased with the formation of clay minerals. Consequently, elements were effectively constrained in the gouge zone mostly filled with authigenic minerals including clay minerals, characterized by the low element mobility.

Reflectance and Microhardness Characteristics of Sulfide Minerals from the Sambong Copper Mine (삼봉동광산산(三峰銅鑛山産) 유화광물(硫化鑛物)의 반사도(反射度)와 미경도(微硬度) 특성(特性))

  • Chi, Se Jung
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.115-139
    • /
    • 1984
  • The Cu-Pb-Zn-Ag hydrothermal vein-type deposits which comprise the Sambong mine occur within calc-alkaline volcanics of the Cretaceous Gyeongsang Basin. The ore mineralization took place through three distinct stages of quartz (I and II stages) and calcite veins (III stage) which fill the pre-existing fault breccia zones. These stages were separated in time by tectonic fracturing and brecciation events. The reflection variations of one mineral depending on mineralization sequence are considered to be resulted from variation in its chemical composition due to different physico-chemical conditions in the hydrothermal system. The reflection power of sphalerite increases with the content of Fe substituted for Zn. Reflectances of the sphalerite grain are lower on (111) than on (100) surface. The spectral profiles depend on the internal reflection color. Sphalerite, showing green, yellow and reddish brown internal reflection, have the highest reflection power at $544m{\mu}$ (green), $593m{\mu}$ (yellow) and $615m{\mu}$ (red) wavelength, respectively. Chalcopyrite is recognized as biaxial negative from the reflectivity data of randomly oriented grains measured at the most sensitivity at $544m{\mu}$. The microindentation hardness against the Fe content (wt. %) for the sphalerite increases to 8.05% Fe and then decreases toward 9.5% Fe content. Vickers hardness of the sphalerite is considerably higher on surface of (100) than on (111). The relationship between Vickers hardness and crystal orientation of the galena was determined to be $VHN_{(111)}$ > $VHN_{(210)}$ > $VHN_{(100)}$. The softer sulfides have the wider variation of the diagonal length in the indentation. Diagonal length in the indentation is pyrite

  • PDF