• Title/Summary/Keyword: breast cancer imaging

Search Result 280, Processing Time 0.03 seconds

Acquisition of Monochromatic X-ray using Graded Multilayer Mirror (Graded 다층박막거울을 이용한 단색 엑스선 획득)

  • Ryu, Cheolwoo;Choi, Byoungjung;Son, Hyunhwa;Kwon, Youngman;Kim, Byoungwook;Kim, Youngju;Chon, Kwonsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.205-211
    • /
    • 2015
  • At a recent medical imaging technology, the major issue of X-ray diagnosis in breast cancer is the early detection of breast cancer and low patient's exposure dose. As one of studies to acquire a monochromatic X-ray, Technologies using multilayer mirror had been preceded. However, a uniform multilayer mirror that consists of uniform thin-film thickness can acquire a monochromatic X-ray only in the partial area corresponds to angle of incidence of white X-ray, so there are limits for X-ray imaging technology applications. In this study, we designed laterally graded multilayer mirror(below GML) that reflects same monochromatic X-ray over the entire area of thin-film mirror, which have the the thickness of the linear gradient that correspond to angle of incidence of white X-ray. By using ion-beam sputtering system added the mask control system we fabricated a GML which has size of $100{\times}100mm^2$. The GML is designed to achieve the monochromatic X-ray of 17.5kev energy and has thin-film thickness change from 4.62nm to 6.57nm(3.87nm at center). It reflects the monochromatic X-ray with reflectivity of more than 60 percent, FWHM of below 2.6keV and X-ray beam width of about 3mm. The monochromatic X-ray corresponded to 17.5keV using GML would have wide application in development of mammography system with high contrast and low dose.

Changes in Breast-tumor Blood Flow in Response to Hypercapnia during Chemotherapy with Laser Speckle Flowmetry

  • Kim, Hoonsup;Lee, Youngjoo;Lee, Songhyun;Kim, Jae Gwan
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.555-565
    • /
    • 2019
  • Development of a biomarker for predicting tumor-treatment efficacy is a matter of great concern, to reduce time, medical expense, and effort in oncology therapy. In a preclinical study, we hypothesized that the blood-flow parameter based on laser speckle flowmetry (LSF) could be a potential indicator to estimate the efficacy of breast-cancer treatment. To verify this hypothesis, a 13762-MAT-B-III rat breast tumor was grown in a dorsal skinfold window chamber applied to a nude mouse, and the change in blood flow rate (BFR) - or the speckle flow index (SFI) is used together as the same meaning in this manuscript - was longitudinally monitored during tumor growth and metronomic cyclophosphamide treatment. Based on the daily LSF angiogram, several BFR parameters (baseline SFI, normalized SFI, and △rBFR) were compared to tumor size in the normal, treated, and untreated tumor groups. Despite the incomplete tumor treatment, we found that the daily changes in all BFR parameters tended to have partially positive correlation with tumor size. Moreover, we observed that the changes in baseline SFI and normalized SFI responded one day earlier than the tumor shrinkage during chemotherapy. However, daily variations in the hypercapnia-induced △rBFR lagged tumor shrinkage by one day. This study would contribute not only to evaluating tumor vascular response to treatment, but also to monitoring blood-flow-mediated diseases (in brain, skin, and retina) by using LSF in preclinical settings.

Analysis of breast shielding rate of bismuth shield (비스무스 차폐체의 유방 차폐율 분석)

  • Kim, Jae Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1132-1137
    • /
    • 2020
  • In order to reduce unnecessary exposure doses generated when mammography is performed using a mammography device, a shielding ratio analysis was performed when a self-made shielding body made of bismuth was applied to the breast opposite to the imaging site. In order to determine the scattering dose of uncompressed breasts during CC and MLO tests when the right and left are compressed, the experiment is divided into when bismuth is not shielded (Not used: NU group) and when shielded (Used: U group). Proceeded. The average dose of the NU group was 9.568μSv, and the average dose of the U group was 1.038μSv. The average measured dose before and after the use of the bismuth shield was reduced by 89.15%. The use of a bismuth shield for mammography can shield scattered radiation and keep exposure to radiation to a minimum.

Imaging of Tumor Proliferation Using Iodine-131-Iodomethyluridine (Iodine-131-Iodomethyluridine을 이용한 종양세포증식의 영상화에 관한 실험적 연구)

  • Min Kyung-Yoon;Kim, Chang-Guhn;Kim, Hyun-Jeong;Lim, Hyung-Guhn;Rho, Ji-Young;Juhng Seon-Kwan;Won Jong-Jin;Yang, David J.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.30 no.3
    • /
    • pp.344-350
    • /
    • 1996
  • Purpose : Noninvasive imaging of tumor cell proliferation could be helpful in the evaluation of tumor growth potential and could provide an early assessment of treatment response. Radiolabeled thymidine, uridine and adenosine have been used to evaluate tumor cell proliferation. These nucleoside analogs are incorporated into DNA during proliferation. Iodine-131-Iodomethyluridine, an analog of Iodine-131-Iododeoxyuridine, is also involved in DNA/RNA synthesis. The purpose of this study was to develop Iodine-131-Iodomethylurdine and image tumor proliferation using Iodine-131-Iodomethyluridine. Materials and Methods : Radiosynthesis of Iodine-131-5-Iodo-2'-O-methyluridine (Iodine-131-Iodomethyluridine) was prepared from 10 mg of 2'-O-methyluridine(Sigma chemical Co., St. Louis, Missouri) and 2.1 mCi(SP. 10Ci/mg) of Iodine-131-labeled sodium iodide in $100{\mu}l$ of water using iodogen reaction. Female Fischer 344 rats were inoculated in the thigh area with breast tumor cells(13765 NF, $10^5$ cells/rat S.C.). After 14 days, the Iodine-131-Iodomethyluridine $10{\mu}Ci$ was injected to three groups of rats(3/group). The percent of injected dose per gram of tissue weight was determined at 0.5-hours, 2-hours, 4-hours, and 24-hours respectively. Tumor bearing rats after receiving Iodine-131-Iodomethyluridine($50{\mu}Ci$ IV) were euthanized at 2 hours after injection. Autoradiography was done using freeze-dried $50{\mu}m$ coronal section. After injection of Iodine-131- Iodomethyluridine ($10{\mu}Ci$/rat, IV) in three breast tumor-bearing rats, planar scintigraphy was taken at 45 minutes, 90 minutes and 24 hours. Results : Iodine-131-Iodomethyluridine was conveniently synthesized using iodogen reaction. The biodistribution showed fast blood clearance and the tumor-to-tissue uptake ratios showed that optimal imaging time was at 2 hours postinjection. Autoradiogram and planar scintigram indicated that tumor could be well visualized. Conclusion : The findings suggest that Iodine-131-Iodomethyluridine, a new radio-iodinated nucleoside, has potential use for evaluation of active regions of tumor growth.

  • PDF

Computer Assisted EPID Analysis of Breast Intrafractional and Interfractional Positioning Error (유방암 방사선치료에 있어 치료도중 및 분할치료 간 위치오차에 대한 전자포탈영상의 컴퓨터를 이용한 자동 분석)

  • Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
    • Progress in Medical Physics
    • /
    • v.17 no.1
    • /
    • pp.24-31
    • /
    • 2006
  • Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.

  • PDF

Adaptive Image Rescaling for Weakly Contrast-Enhanced Lesions in Dedicated Breast CT: A Phantom Study (약하게 조영증강된 병변의 유방 전용 CT 영상의 대조도 개선을 위한 적응적 영상 재조정 방법: 팬텀 연구)

  • Bitbyeol Kim;Ho Kyung Kim;Jinsung Kim;Yongkan Ki;Ji Hyeon Joo;Hosang Jeon;Dahl Park;Wontaek Kim;Jiho Nam;Dong Hyeon Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.6
    • /
    • pp.1477-1492
    • /
    • 2021
  • Purpose Dedicated breast CT is an emerging volumetric X-ray imaging modality for diagnosis that does not require any painful breast compression. To improve the detection rate of weakly enhanced lesions, an adaptive image rescaling (AIR) technique was proposed. Materials and Methods Two disks containing five identical holes and five holes of different diameters were scanned using 60/100 kVp to obtain single-energy CT (SECT), dual-energy CT (DECT), and AIR images. A piece of pork was also scanned as a subclinical trial. The image quality was evaluated using image contrast and contrast-to-noise ratio (CNR). The difference of imaging performances was confirmed using student's t test. Results Total mean image contrast of AIR (0.70) reached 74.5% of that of DECT (0.94) and was higher than that of SECT (0.22) by 318.2%. Total mean CNR of AIR (5.08) was 35.5% of that of SECT (14.30) and was higher than that of DECT (2.28) by 222.8%. A similar trend was observed in the subclinical study. Conclusion The results demonstrated superior image contrast of AIR over SECT, and its higher overall image quality compared to DECT with half the exposure. Therefore, AIR seems to have the potential to improve the detectability of lesions with dedicated breast CT.

Development of a Small Gamma Camera Using NaI(T1)-Position Sensitive Photomultiplier Tube for Breast Imaging (NaI (T1) 섬광결정과 위치민감형 광전자증배관을 이용한 유방암 진단용 소형 감마카메라 개발)

  • Kim, Jong-Ho;Choi, Yong;Kwon, Hong-Seong;Kim, Hee-Joung;Kim, Sang-Eun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Moon-Hae;Joo, Koan-Sik;Kim, Byuug-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.365-373
    • /
    • 1998
  • Purpose: The conventional gamma camera is not ideal for scintimammography because of its large detector size (${\sim}500mm$ in width) causing high cost and low image quality. We are developing a small gamma camera dedicated for breast imaging. Materials and Methods: The small gamma camera system consists of a NaI (T1) crystal ($60 mm{\times}60 mm{\times}6 mm$) coupled with a Hamamatsu R3941 Position Sensitive Photomultiplier Tube (PSPMT), a resister chain circuit, preamplifiers, nuclear instrument modules, an analog to digital converter and a personal computer for control and display. The PSPMT was read out using a standard resistive charge division which multiplexes the 34 cross wire anode channels into 4 signals ($X^+,\;X^-,\;Y^+,\;Y^-$). Those signals were individually amplified by four preamplifiers and then, shaped and amplified by amplifiers. The signals were discriminated ana digitized via triggering signal and used to localize the position of an event by applying the Anger logic. Results: The intrinsic sensitivity of the system was approximately 8,000 counts/sec/${\mu}Ci$. High quality flood and hole mask images were obtained. Breast phantom containing $2{\sim}7 mm$ diameter spheres was successfully imaged with a parallel hole collimator The image displayed accurate size and activity distribution over the imaging field of view Conclusion: We have succesfully developed a small gamma camera using NaI(T1)-PSPMT and nuclear Instrument modules. The small gamma camera developed in this study might improve the diagnostic accuracy of scintimammography by optimally imaging the breast.

  • PDF

Transcriptional and Nontranscriptional Regulation of NIS Activity and Radioiodide Transport (NIS 기능의 전사 및 전사외 조절과 방사성옥소 섭취)

  • Jung, Kyung-Ho;Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.343-349
    • /
    • 2007
  • Radioiodide transport has been extensively and successfully used in the evaluation and management of thyroid disease. The molecular characterization of the sodium/iodide symporter (NIS) and cloning of the NIS gene has led to the recent expansion of the use of radioiodide to cancers of the breast and other nonthyroidal tissues exogenously transduced with the NIS gene. More recently, discoveries regarding the functional analysis and regulatory processes of the NIS molecule are opening up exciting opportunities for new research and applications for NIS and radio iodide. The success of NIS based cancer therapy is dependent on achievement of maximal radioiodide transport sufficient to allow delivery of effective radiation doses. This in turn relies on high transcription rates of the NIS gene. However, newer discoveries indicate that nontranscriptional processes that regulate NIS trafficking to cell membrane are also critical determinants of radioiodide uptake. In this review, molecular mechanisms that underlie regulation of NIS transcription and stimuli that augment membrane trafficking and functional activation of NIS molecules will be discussed. A better understanding of how the expression and cell surface targeting of NIS proteins is controlled will hopefully aid in optimizing NIS gene based cancer treatment as well as NIS based reporter-gene imaging strategies.

The value of Dedicated Tc-99m MIBI Scintimammography in the Evaluation of Patients with Palpable Breast Lesions in Comparison with Mammography: Preliminary Result (만져지는 유방 병소를 평가하는데 있어 Tc-99m MIBI 유방스캔과 유방촬영 술의 비교: 예비 결과)

  • Cho, Arthur;Cho, Ho-Jin;Yun, Mi-Jin;Park, Byeong-Woo;Kim, Min-Jung;Kim, Eun-Kyung;Kang, Won-Jun;Lee, Jong-Doo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.48-54
    • /
    • 2009
  • Purpose: There are few studies evaluating the usefulness of dedicated high-resolution scintimammography and no studies using delayed washout with this dedicated high resolution scintimammography for the evaluation of breast lesions. We underwent this study to evaluate the clinical usefulness of Tc-99m MIBI in evaluating patients with palpable breast lesions using dedicated high-resolution scintimammography. Materials and Methods: This study included 19 patients with 23 palpable breast lesions who underwent mammography. Tc-99m MIBI was taken to further characterize these lesions. Scintimammography images were acquired with standard craniocaudal and mediolateral oblique views and delayed images were additionally taken. Final conclusions were based on histopathology, either by biopsy or mastectomy results. Results: Eighteen lesions were malignant and five were benign. Mammography was indeterminate for thirteen lesions, nine of those were malignant. Mammography also categorized one lesion as benign in a dense breast, but scintimammography and pathology results showed malignancy. Of the five benign lesions, two were visible on scintimammography, but delayed images showed washout. Conclusion: Based on our preliminary results, dedicated high resolution scintimammography seems to be very useful in characterizing palpable lesions that were indeterminate or negative on mammography.

Dosimetric Effects of Intrafractional Organ Motion in Field-in-Field Technique for Whole-Breast Irradiation

  • Hong, Chae-Seon;Ju, Sang Gyu;Choi, Doo Ho;Han, Youngyih;Huh, Seung Jae;Park, Won;Ahn, Yong Chan;Kim, Jin Sung;Lim, Do Hoon
    • Progress in Medical Physics
    • /
    • v.30 no.3
    • /
    • pp.65-73
    • /
    • 2019
  • Purpose: We evaluated the motion-induced dosimetric effects on the field-in-field (FIF) technique for whole-breast irradiation (WBI) using actual patient organ motion data obtained from cine electronic portal imaging device (cine EPID) images during treatment. Materials and Methods: Ten breast cancer patients who received WBI after breast-conserving surgery were selected. The static FIF (SFIF) plan involved the application of two parallel opposing tangential and boost FIFs. To obtain the amplitude of the internal organ motion during treatment, cine EPID images were acquired five times for each patient. The outside contour of the breast (OCB) and chest wall (CW) contour were tracked using in-house motion analysis software. Intrafractional organ motion was analyzed. The dynamic FIF (DFIF) reflecting intrafractional organ motion incorporated into the SFIF plan was calculated and compared with the SFIF in terms of the dose homogeneity index (DHI90/10) for the target and V20 for the ipsilateral lung. Results: The average motion amplitudes along the X and Y directions were 1.84±1.09 mm and 0.69±0.50 mm for OCB and 1.88±1.07 mm and 1.66±1.49 mm for CW, respectively. The maximum motion amplitudes along the X and Y directions were 5.53 and 2.08 mm for OCB and 5.22 and 6.79 mm for CW, respectively. Significant differences in DHI90/10 values were observed between SFIF and DFIF (0.94 vs 0.95, P<0.05) in statistical analysis. The average V20 for the lung in the DFIF was slightly higher than that of the SFIF in statistical analysis (19.21 vs 19.00, P<0.05). Conclusion: Our findings indicate that the FIF technique can form a safe and effective treatment method for WBI. Regular monitoring using cine EPID images can be effective in reducing motion-induced dosimetric errors.