Kim, Hana;Youk, Ji Hyun;Kim, Jeong-Ah;Gweon, Hye Mi;Jung, Woo-Hee;Son, Eun Ju
Asian Pacific Journal of Cancer Prevention
/
v.15
no.7
/
pp.3179-3183
/
2014
Background: The purpose of study was to evaluate radiologic or clinical features of breast cancer undergoing ultrasound (US)-guided 14G core needle biopsy (CNB) and analyze the differences between underestimated and accurately diagnosed groups. Materials and Methods: Of 1,898 cases of US-guided 14G CNB in our institute, 233 cases were proven to be cancer by surgical pathology. The pathologic results from CNB were invasive ductal carcinoma (IDC) (n=157), ductal carcinoma in situ (DCIS) (n=40), high-risk lesions in 22 cases, and benign in 14 cases. Among high-risk lesions, 7 cases of atypical ductal hyperplasia (ADH) were reported as cancer and 11 cases of DCIS were proven IDC in surgical pathology. Some 29 DCIS cases and 157 cases of IDC were correctly diagnosed with CNB. The clinical and imaging features between underestimated and accurately diagnosed breast cancers were compared. Results: Of 233 cancer cases, underestimation occurred in 18 lesions (7.7%). Among underestimated cancers, CNB proven ADH (n=2) and DCIS (n=11) were diagnosed as IDC and CNB proven ADH (n=5) were diagnosed at DCIS finally. Among the 186 accurately diagnosed group, the CNB results were IDC (n=157) and DCIS (n=29). Comparison of underestimated and accurately diagnosed groups for BI-RADS category, margin of mass on mammography and US and orientation of lesion on US revealed statistically significant differences. Conclusions: Underestimation of US-guided 14G CNB occurred in 7.7% of breast cancers. Between underestimated and correctly diagnosed groups, BI-RADS category, margin of the mass on mammography and margin and orientation of the lesions on US were different.
Guoxue Tang;Xin An;Huiling Xiang;Lixian Liu;Anhua Li;Xi Lin
Korean Journal of Radiology
/
v.21
no.5
/
pp.550-560
/
2020
Objective: To evaluate the interobserver agreement, diagnostic value, and associated clinical factors of automated breast ultrasound (ABUS) coronal features in differentiating breast lesions. Materials and Methods: This study enrolled 457 pathologically confirmed lesions in 387 female (age, 46.4 ± 10.3 years), including 377 masses and 80 non-mass lesions (NMLs). The unique coronal features, including retraction phenomenon, hyper- or hypoechoic rim (continuous or discontinuous), skipping sign, and white wall sign, were defined and recorded. The interobserver agreement on image type and coronal features was evaluated. Furthermore, clinical factors, including the lesion size, distance to the nipple or skin, palpability, and the histological grade were analyzed. Results: Among the 457 lesions, 296 were malignant and 161 were benign. The overall interobserver agreement for image type and all coronal features was moderate to good. For masses, the retraction phenomenon was significantly associated with malignancies (p < 0.001) and more frequently presented in small and superficial invasive carcinomas with a low histological grade (p = 0.027, 0.002, and < 0.001, respectively). Furthermore, continuous hyper- or hypoechoic rims were predictive of benign masses (p < 0.001), whereas discontinuous rims were predictive of malignancies (p < 0.001). A hyperechoic rim was more commonly detected in masses more distant from the nipple (p = 0.027), and a hypoechoic rim was more frequently found in large superficial masses (p < 0.001 for both). For NMLs, the skipping sign was a predictor of malignancies (p = 0.040). Conclusion: The coronal plane of ABUS may provide useful diagnostic value for breast lesions.
Chung, Sun Young;Cha, Joo Hee;Kim, Hak Hee;Shin, Hee Jung;Kim, Hyun Ji;Chae, Eun Young;Shin, Ji Eun;Choi, Woo Jung;Hong, Min Ji;Ahn, Sei Hyun;Lee, Jong Won;Jung, Kyung Hae
Investigative Magnetic Resonance Imaging
/
v.17
no.3
/
pp.207-214
/
2013
Purpose : To evaluate the MRI findings of breast cancer with BRCA mutation. Materials and Methods: We collected information of the breast cancer patients who underwent the test for BRCA gene mutation as well as preoperative breast MRI from January 2007 to December 2010. A total of 185 patients were enrolled; 33 of these patients had BRCA mutations and 152 patients did not. Among them, a total of 231 breast cancers were detected. Images of the 47 breast cancers with BRCA mutation and of the 184 breast cancers without mutations were evaluated to compare the morphologic and enhancement features on MRI. Results: With MR imaging, there were no significant difference in morphologic characteristic between two groups. However, enhancement pattern in the group with BRCA mutation were more likely to have persistent enhancement (p < 0.233), and LN metastasis was more common in breast cancers without BRCA mutation. Breast cancers with BRCA 2 mutation tend to show more persistent enhancement pattern than BRCA 1 mutation. Conclusion: In breast cancer patients with BRCA mutation, MRI didn't show significant difference in morphologic characteristics, however breast cancers with BRCA gene mutation carriers tend to have benign morphologic features on MRI, such as Type 1 kinetic curve enhancement.
Purpose This study aimed to investigate the diagnostic performance of features suggestive of nodal metastasis on preoperative MRI in patients with invasive breast cancer. Materials and Methods We retrospectively reviewed the preoperative breast MRI of 192 consecutive patients with surgically proven invasive breast cancer. We analyzed MRI findings of axillary lymph nodes with regard to the size, long/short ratio, cortical thickness, shape and margin of the cortex, loss of hilum, asymmetry, signal intensity (SI) on T2-weighted images (T2WI), degree of enhancement in the early phase, and enhancement kinetics. Receiver operating characteristic (ROC) analysis, chi-square test, t test, and McNemar's test were used for statistical analysis. Results Increased shorter diameter, uneven cortical shape, increased cortical thickness, loss of hilum, asymmetry, irregular cortical margin, and low SI on T2WI were significantly suggestive of metastasis. ROC analysis revealed the cutoff value for the shorter diameter and cortical thickness as 8.05 mm and 2.75 mm, respectively. Increased cortical thickness (> 2.75 mm) and uneven cortical shape showed significantly higher sensitivity than other findings in McNemar's test. Irregular cortical margins showed the highest specificity (100%). Conclusion Cortical thickness > 2.75 mm and uneven cortical shape are more sensitive parameters than other findings, and an irregular cortical margin is the most specific parameter for predicting axillary metastasis in patients with invasive breast cancer.
Akbari, Mohammad Esmaeil;Haghighatkhah, Hamidreza;Shafiee, Mohammad;Akbari, Atieh;Bahmanpoor, Mitra;Khayamzadeh, Maryam
Asian Pacific Journal of Cancer Prevention
/
v.13
no.5
/
pp.1907-1910
/
2012
Background: Breast cancer is the most prevalent cancer and the fifth cause of cancer death in Iranian women. Early detection and treatment are important for appropriate management of this disease. Mammography and ultrasonography are used for screening and evaluation of symptomatic cases and the main diagnostic test for breast cancer is pathological. In this study we evaluated mammography and ultrasonography as diagnostic tools. Methods: In this cross-sectional study 384 mammography and ultrasonography reports for 255 women were assessed, divided into benign and malignant groups. Suspected cases were referred for pathology evaluation. The radiologic and pathologic reports were compared and also comparison was performed based on age groups (more and less than 50 years old), history of breastfeeding and gravidity. Statistical analysis was performed by SPSS. Results: The mean ages of malignant and benign cases were $49{\pm}11.6$ and $43{\pm}11.2$ years, respectively. Sensitivity and specificity for mammography were 73% and 45%, respectively. Sensitivity and specificity for ultrasonography were 69% and 49%, respectively. There were statistical differences between specificity of mammography in patients based on factors such as history of gravidity, breastfeeding and sensitivity in patients equal or more than 50 years old and less. Conclusion: Factors affecting different results in mammography and ultrasonography reports were classified into three groups, consisting of skill, experience and training of medical staff, and setting of instruments. It is recommended that health managers in developing countries pay attention the quality of setting and man power more than current status. Policy-makers and managers must establish guidelines regarding breast imaging in Iran.
Purpose To investigate the correlation between magnetic resonance (MR) image-based radiomics features and the genomic features of breast cancer by focusing on biomolecular intrinsic subtypes and gene expression profiles based on risk scores. Materials and Methods We used the publicly available datasets from the Cancer Genome Atlas and the Cancer Imaging Archive to extract the radiomics features of 122 breast cancers on MR images. Furthermore, PAM50 intrinsic subtypes were classified and their risk scores were determined from gene expression profiles. The relationship between radiomics features and biomolecular characteristics was analyzed. A penalized generalized regression analysis was performed to build prediction models. Results The PAM50 subtype demonstrated a statistically significant association with the maximum 2D diameter (p = 0.0189), degree of correlation (p = 0.0386), and inverse difference moment normalized (p = 0.0337). Among risk score systems, GGI and GENE70 shared 8 correlated radiomic features (p = 0.0008-0.0492) that were statistically significant. Although the maximum 2D diameter was most significantly correlated to both score systems (p = 0.0139, and p = 0.0008), the overall degree of correlation of the prediction models was weak with the highest correlation coefficient of GENE70 being 0.2171. Conclusion Maximum 2D diameter, degree of correlation, and inverse difference moment normalized demonstrated significant relationships with the PAM50 intrinsic subtypes along with gene expression profile-based risk scores such as GENE70, despite weak correlations.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.420-426
/
2022
Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.
Khokher, Samina;Qureshi, Muhammad Usman;Chaudhry, Naseer Ahmad
Asian Pacific Journal of Cancer Prevention
/
v.13
no.7
/
pp.3213-3218
/
2012
When patients with advanced breast cancer (ABC) are treated with neoadjuvant chemotherapy (NACT), efficacy is monitored by the extent of tumor shrinkage. Since their publication in 1981, World Health Organization (WHO) guidelines have been widely practiced in clinical trials and oncologic practice, for standardized tumor response evaluation. With advances in cancer treatment and tumor imaging, a simpler criterion based on one-dimensional rather than bi-dimensional (WHO) tumor measurement, named Response Evaluation Criteria in Solid Tumors (RECIST) was introduced in 2000. Both approaches have four response categories: complete response, partial response, stable disease and progressive disease (PD). Bi-dimensional measurement data of 151 patients with ABC were analysed with WHO and RECIST criteria to compare their response categories and inter criteria reproducibility by Kappa statistics. There was 94% concordance and 9/151 patients were recategorized with RECIST including 6/12 PD cases. RECIST therefore under-estimates and delays diagnosis of PD. This is undesirable because it may delay or negate switch over to alternate therapy. Analysis was repeated with a new criteria named RECIST-Breast (RECIST-B), with a lower threshold for PD (${\geq}10%$ rather than ${\geq}20%$ increase of RECIST). This showed higher concordance of 97% with WHO criteria and re-categorization of only 4/151 patients (1/12 PD cases). RECIST-B criteria therefore have advantages of both ease of measurement and calculations combined with excellent concordance with WHO criteria, providing a practical clinical tool for response evaluation and offering good comparison with past and current clinical trials of NACT using WHO guidelines.
In this paper, we proposed the microcalcification detection algorithm which is based on wavelet transform and automatic thresholding method in the X-ray mammographic images. Digital X-ray imaging system is essential equipment in the field diagnosis and is widely used in the various fields such as chest, fracture of a bone, and dental correction. Especially, digital X-ray mammographic imaging is known as the most important method to diagnose the breast cancer, many researches to develop the imaging system are processing in country. In this paper, we proposed a microcalcifications detection algorithm necessary in the early phase of breast cancer diagnosis and showed that a algorithm could effectively detect microcalfication and could aid diagnosis-radiologist.
Choi, Soo Yeon;Sung, Deuk Jae;Han, Na Yeon;Park, Beom Jin;Kim, Min Ju;Sim, Ki Choon;Cho, Sung Bum
Investigative Magnetic Resonance Imaging
/
v.19
no.1
/
pp.56-61
/
2015
Adenosarcoma of the uterus is a rare biphasic tumor containing benign glandular epithelial and malignant mesenchymal components. The tumor has been reported to be associated with antiestrogen therapy, particularly tamoxifen, but there have been a few case reports with MRI. We present two cases of MRI findings of uterine adenosarcoma after antiestrogen therapy, tamoxifen and toremifene in breast cancer patients. The tumor presents as a large polypoid mass occupying the endometrial cavity, and may protrude into the vagina. On MRI, the tumor typically shows solid components with scattered small cysts and heterogeneous enhancement. These findings are not significantly different from conventional adenosarcoma.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.