• Title/Summary/Keyword: breakthrough compounds

Search Result 56, Processing Time 0.022 seconds

Analysis of the composition of trail pheromone secreted from live Camponotus japonicus by HS-SPME GC/MS (HeadSpace-Solid Phase MicroExtraction Gas Chromatography/Mass Spectrometry) (HS-SPME GC/MS법을 이용한 일본왕개미의 trail pheromone 성분 분석)

  • Park, Kyung-Eun;Lee, Dong-Kyu;Kwon, Sung Won;Lee, Mi-Young
    • Analytical Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.292-299
    • /
    • 2012
  • GC/MS has been utilized for many applications due to great resolution and reproducibility, which made it possible to build up the database of mass spectrum, while HS-SPME has the advantage of solventfree extraction of volatile compounds. The combination of these two methods, HS-SPME GC/MS, enabled many scientific applications with various possibilities. In this study, the analysis of trail pheromone excreted from live Camponotus japonicus with the feature of solvent-free extraction was carried out and the optimization for this analysis was performed. The major compounds detected were n-decane, n-undecane, and n-tridecane. Optimization for the best detection of these hydrocarbons was processed in the point of SPME parameter (selection of fiber, extraction temperature, extraction time, etc.). The advantage of the analysis of live sample is to analyze phenomenon right after it is excreted by ants. But the experimental process has restriction of extraction temperature and time because of the analysis of live ants. Establishing the process of HS-SPME GC/MS applied to live samples shown in this study can be a breakthrough for the ecofriendly and ethical research of live things.

Removal of Ionic and Non-ionic Pharmaceuticals Using Granular Activated Carbon (입상활성탄을 이용한 이온성 및 비이온성 의약품의 제거)

  • Oh, Hee-Kyong;Kagawa, Chie;Urase, Taro;Simazaki, Dai;Kunikane, Shoichi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1192-1197
    • /
    • 2006
  • Adsorbability of ionic and nonionic pharmaceuticals was studied using granular activated carbon(GAC). In a batch adsorption test of muticomponent solution, 500 mg/L of GAC dose removed all target compounds between 94 and 98% at initial concentration of 10 ${\mu}g/L$. Adsorption of ionic pharmaceuticals increased as pH was lowered toward to pKa, however adsorption capacity of nonionic pharmaceuticals showed insignificant variation with the changing pH. The enhanced adsorption capacity of ionic pharmaceuticals at lower pH was attributed to the corresponding increase in the molecular form of ionic pharmaceuticals with carboxylic group at low pH. In addition, decrease of pH increased hydrogen ion concentration in the bulk solution and the protons bound to the available sites on the carbon enhanced the removal of the ionic pharmaceuticals from solution. After 40 days of continuous operation, GAC column showed the removal of target compounds were removed by $93{\sim}99%$ at 15 min of EBCT mainly due to adsorption mechanism of GAC. At shorter EBCT than 15 min, breakthrough of CA, IBP and GFZ occurred earlier than the other ionic and nonionic pharmaceuticals. effect of EBCT on adsorption of nonionic pharmaceuticals was greater than ionic ones. This study showed that persitent pharmaceuticals found in drinking water treatment could be effectively controlled by adsorption in GAC process.

Transport and Fate of Benzene in a Sandy Soil (사질토양에서의 Benzene의 이동성에 관한 연구)

  • 백두성;김동주
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.95-100
    • /
    • 1999
  • Hydrocarbon compounds in vadose zone soils caused by adsorption onto the surfaces of solid particles are generally considered to show retardation effect. In this study, we investigated the retardation effect on the transport of Benzene in a sandy soil by conducting batch and column tests. The batch test was conducted by equilibrating dry soil mass with Benzene solutions of various initial concentrations. and by analyzing the concentrations of Benzene in initial and equilibrated solutions using HPLC. The column test consisted of monitoring the concentrations of effluent versus time known as a breakthrough curve (BTC). We used KCl and Benzene solutions with the concentration of 10 g/L and 0.88 g/L as a tracer, and injected them into the inlet boundary of the soil sample as a square pulse type respectively, and monitored the effluent concentrations at the exit boundary under a steady state condition using an EC-meter and HPLC. From the batch test, we obtained a distribution coefficient assuming that a linear adsorption isotherm exists and calculated the retardation factor based on the bulk density and porosity of the column sample. We also predicted the column BTC curve using the retardation factor obtained from the distribution coefficient and compared with the measured BTC of Benzene. The results of the column test showed that i) the peak concentration of Benzene was much smaller than that of KCl and ⅱ) the travel times of peak concentrations for the two tracers were more or less identical. These results indicate that adsorption of Benzene onto the sand panicles occurred during the pulse propagation but the retardation of Benzene caused by adsorption was not present in the studied soil. Comparison of the predicted with the measured BTC of Benzene resulted in a poor agreement due to the absence of the retardation phenomenon. The only way to describe the absolute decrease of Benzene concentration in the column leaching experiment was to introduce a decay or sink coefficient in the convection-dispersion equation (CDE) model to account for an irreversible sorption of Benzene in the aqueous phase.

  • PDF

Adsorption of Amine and Sulfur Compounds by Cobalt Phthalocyanine Derivatives (코발트 프탈로시아닌 유도체에 의한 아민 및 황 화합물의 흡착)

  • Lee, Jeong Se;Lee, Hak Sung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.592-598
    • /
    • 2007
  • The adsorption capability of cobalt phthalocyanine derivatives was investigated by means of X-ray diffractometor (XRD), FT-IR spectroscopy, scanning electron microscopy (SEM), and temperature programmed desorption (TPD). According to TPD results for ammonia, cobalt phthalocyanine derivatives showed two desorption peaks at low temperature ($100{\sim}150^{\circ}C$) and high temperature ($350{\sim}400^{\circ}C$) indicating that there were two kinds of acidities. Tetracarboxylic cobalt phthalocyanine (Co-TCPC) has a stronger desorption peak (chemical adsorption) at high temperature and a weaker desorption peak (physical adsorption) at low temperature than cobalt phthalocyanine (Co-PC). The specific surface areas of Co-TCPC and Co-PC were 37.5 and $18.4m^2/g$, respectively. The pore volumes of Co-TCPC and Co-PC were 0.17 and $0.10cm^3/g$, respectively. The adsorption capability of triethyl amine calculated by breakthrough curve at 120 ppm of equilibrium concentration was 24.3 mmol/g for Co-TCPC and 0.8 mmol/g for Co-PC. The removal efficiencies of dimethyl sulfide of Co-TCPC and Co-PC in batch experiment of 225 ppm of initial concentration were 92 and 18%, respectively. The removal efficiencies of trimethyl amine of Co-TCPC and Co-PC in batch experiment of 118 ppm of initial concentration were 100 and 17%, respectively.

Removal of Heavy Metal and Phenol from Aqueous Solution Using Fe(III) loaded Adsorbent (3가철 함유 흡착제를 이용한 수용액상의 중금속 및 페놀제거연구)

  • Kim, Seok-Jun;Kim, Won-Gee;Lee, Seung-Mok;Yang, Jae-Kyu;Lee, Nam-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.541-548
    • /
    • 2009
  • Iron coated media (activated carbon, sand and starfish) were prepared at pH 4 and applied for the treatment of landfill leachate containing organic compounds and soluble metal ions such as $Zn^{2+},\;Cu^{2+},\;Mn^{2+}$ in batch and column experiment. The amount of iron coated in media was analyzed with EPA 3050B method. The removal efficiency of metal ions and phenol was compared with iron coated media. The amount of iron coated in Fe-AC and ICS(iron coated sand) were 1,612 mg/kg and 1,609 mg/kg, respectively, while it was higher with 1,768 mg/kg in ICSF(iron coated starfish). The result of batch study represent the highest removal efficiency in the treatment of wastewater using iron coated starfish. In column study, the removal efficiency of phenol and metal ions was higher in multi-layered system of ICS, Fe-AC and ICSF compared to single layered system. Breakthrough time in the effluent was relatively enhanced for $Cu^{2+}$ and $Zn^{2+}$ in multi-layered system while the removal efficiency of $Mn^{2+}$ were not varied much. Therefore, multi-layered system was identified as the better system for the treatment of wastewater containing of metal ions and organic compound.

Adsorptive Removal of TBM and THT Using Ion-exchanged NaY Zeolites (이온교환된 NaY 제올라이트를 이용한 TBM와 THT의 흡착제거)

  • Jung, Gap-Soon;Lee, Seok-Hee;Cheon, Jae-Kee;Choe, Jae-Wook;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.60-66
    • /
    • 2009
  • Adsorptive removal of tetrahydrothiophene (THT) and tert-butylmercaptan (TBM) that were widely used sulfur odorants in pipeline natural gas was studied using various ion-exchanged NaY zeolites at ambient temperature and atmospheric pressure. In order to improve the adsorption ability, ion exchange was performed on NaY zeolites with alkali metal cations of $Li^+,\;Na^+,\;K^+$ and transition metal cations of $Cu^{2+},\;Ni^{2+},\;Co^{2+},\;Ag^+$. Among the adsorbents tested, Cu-NaY and Ag-NaY showed good adsorption capacities for THT and TBM. These good behaviors of removal of sulfur compound for Cu-NaY and Ag-NaY zeolites probably was influenced by their acidity. The adsorption capacity for THT and TBM on the best adsorbent Cu-NaY-0.5, which was ion exchanged with 0.5 M copper nitrate solution, was 1.85 and 0.78 mmol-S/g at breakthrough, respectively. It was the best sulfur capacity so far in removing organic sulfur compounds from fuel gas by adsorption on zeolites. While the desorption activation energy of TBM on the Cu-NaY-0.5 was higher than NaY zeolite, the difference of THT desorption activation energy between two zeolites was comparatively small.