• Title/Summary/Keyword: breakthrough adsorption capacity

Search Result 120, Processing Time 0.02 seconds

Removals of Formaldehyde by Silver Nano Particles Attached on the Surface of Activated Carbon (나노 은입자가 첨착된 활성탄의 포름알데히드 제거특성)

  • Shin, Seung-Kyu;Kang, Jeong-Hee;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.936-941
    • /
    • 2010
  • This study was conducted to investigate formaldehyde removals by silver nano-particles attached on the surface of granular activated carbon (Ag-AC) and to compare the results to those obtained with ordinary activated carbon (AC). The BET analysis showed that the overall surface area and the fraction of micropores (less than $20{\AA}$ diameter) of the Ag-AC were significantly decreased because the silver particles blocked the small pores on the surface of the Ag-AC. The formaldehyde removal capacity of the Ag-AC determined using the Freundlich isotherm was higher than that of AC. Despite the decreased BET surface area and micropore volume, the Ag-AC had the increased removal capacity for formaldehyde, presumably due to catalytic oxidation by silver nano-particles. In contrast, the adsorption intensity of the Ag-AC, estimated by 1/n in the Freundlich isotherm equation, was similar to that of the ordinary AC, indicating that the surface modification using silver nano-particles did not affect the adsorption characteristics of AC. In a column experiment, the Ag-AC also showed a longer breakthrough time than that of the AC. Simulation results using the homogeneous surface diffusion model (HSDM) were well fitted to the breakthrough curve of formaldehyde for the ordinary AC, but the predictions showed substantial deviations from the experimental data for the Ag-AC. The discrepancy was due to the catalytic oxidation of silver nano-particles that was not incorporated in the HSDM. Consequently, a new numerical model that takes the catalytic oxidation into accounts needs to be developed to predict the combined oxidation and adsorption process more accurately.

The Solid Phase Extraction of Phenol and Chlorophenols by the Chemically Modified Polymeric Adsorbents with Porphyrins

  • Jung, Min-Woo;Kim, Ki-Pal;Cho, Byung-Yun;Paeng, Insook R.;Lee, Dai-Woon;Park, Young-Hun;Paeng, Ki-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.1
    • /
    • pp.77-81
    • /
    • 2006
  • The commercially available Amberlite XAD-2 and XAD-4 resins were modified with macrocyclic protoporphyrin IX (PPIX) or tetrakis(p-carboxyphenyl) porphyrin (TCPP) to enhance the adsorption capacity for phenol and chlorophenols. The chemically modified polymeric adsorbents (XAD-2+PPIX, XAD-2+TCPP, XAD-4+PPIX, and XAD-4+TCPP) were applied to the solid phase extraction as an adsorbent material for the preconcentration of phenol and chlorophenols in environmental waters. Generally, the synthesized adsorbents showed higher recoveries than underivatized adsorbents, XAD-2 and XAD-4, without matrix interferences. Especially, XAD-4+PPIX showed more than 90% recoveries for all compounds used in this study including hydrophilic phenol. The major factor for the increase of the adsorption capacity was the increase of $\pi$-$\pi$ interaction between adsorbents and samples due to the introduction of the porphyrin molecule. However, the breakthrough volumes and recovery values of the XADs+TCPP columns were slightly decreased for the bulky chlorophenols such as TCP and PCP. Using molecular mechanics methods, the structures of TCPP and PPIX were compared with that of porphine, the parent molecule of porphyrin. Four bulky p-carboxyphenyl groups of TCPP were torsional each other, thus the molecular plane of TCPP were not on the same level. In conclusion, the decrease of breakthrough volumes and recovery values of XADs+TCPP columns for bulky phenols can be explained by the steric hindrance of the $\pi$-$\pi$ interaction between porphyrin plane and the phenols.

Detection of Perchlorate in Nakdong River and Removal Characteristics of Perchlorate by Granular Activated Carbon Process (낙동강 수계에서의 Perchlorate 검출 및 활성탄 공정에 의한 제거특성)

  • Son, Hee-Jong;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.4
    • /
    • pp.438-443
    • /
    • 2007
  • This study was done to investigate perchlorate contamination in Nakdong river. The perchlorate was detected in Nakdong river and ranged from ND to $82.1{\mu}g/L$. The highest concentration was observed in Wheguan. The perchlorate concentration was decreased with the down stream of Nakdong river. Three different virgin activated carbons made of each coal(Calgon), coconut(Samchully) and wood(Picabiol) based activated carbon(AC) were tested for an adsorption performance of perchlorate in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of coal, coconut and wood based AC as 2,300 bed volumn(BV), 719 BV and 288 BV respectively. Adsorption capacity(X/M) of real, coconut and wood based AC was observed. The experimental results of adsorption capacity showed that coal based AC was highest$(768.2{\mu}g/g)$, coconut based AC was intermediate$(299{\mu}g/g)$ and wood based AC was lowest$(99.2{\mu}g/g)$. Moreover, carbon usage rates(CURs) for coal, coconut and wood based AC had been shown as 0.71 g/day, 2.16 g/day and 3.45 g/day respectively. The constant characteristic of the system, k of coal, coconut and wood based ACs were found to be 307.2, 102.5 and 94.2, respectively.

Synthesis of arsenic adsorbent using graft polymerization

  • SEKO Noriaki;TAMADA Hasao
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • Fibrous arsenic (As) adsorbent was synthesized by loading zirconium (Zr) on fibrous phosphoric adsorbent that was directly synthesized by radiation-induced graft polymerization of 2-hydroxyethyl methacrylate phosphoric acid on polyethylene-coated polypropylene nonwoven fabric. Zirconium reacted with phosphoric acid grafted in the polyethylene layer. Zirconium density of the resulting adsorbent was 4.1 mmol/g. The breakthrough curve of As(V) adsorption was independent of the flow rate up to $1300\;h^{-1}$ in space velocity. The total capacity of As(V) was 2.0 mmol/g-adsorbent at pH of 2. The adsorbed Zr(IV) could be evaluated by 0.4 M sodium hydroxide solution because negligible Zr(IV) could be found in the eluted solution.

  • PDF

Synthesis of Hybrid Cation Exchange Fibers by E-Beam Preirradiation and Their Adsorption Properties for Metal Ions (E-Beam 전조사법을 이용한 복합양이온 교환섬유의 합성 및 금속이온 흡착특성)

  • Baek Ki-Wan;Nho Young-Chang;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.305-310
    • /
    • 2006
  • The hybrid cation exchange fibers using graft copolymer of styrene onto PE/PP with PET trunk polymers were synthesized by electron beam preirradiation. The degree of grafting showed 123% value at 80% concentration of styrene. And also, amount of sulfonyl group in the ion exchanger was showed 3.3 mmol/g at 70% concentration of styrene and their values were constant after 70%. The tensile strength for fibers was lower than trunk fibers, and their value of ion exchange fibers were also below than copolymer. It was $0.206kgf/mm^2$ value. The breakthrough time for Ca and Mg ions of hybrid cation exchange fibers were increased with the increase in the pH and temperature. The breakthrough of Mg was slower the mixture than single Mg solution. Adsorption rate constant for Ca, Mg ions and maximum ion exchange capacity were 0.012, 0.011 L/mg.h and 47.06, 42.83 mg/g, and also, activation energies were 2169 and 1534 J/mol, respectively.

Removal of Mixed Odor(H$_2$S/CH$_3$SH) using Char Adsorbent Made from Sewage Sludge (하수슬러지 탄화물 흡착제를 이용한 혼합 악취(H$_2$S/CH$_3$SH)의 제거)

  • Han, Young-Suk;Choi, Won-Joon;Kim, Taek-Joon;Kim, Im-Gyung;Oh, Kwang-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.11
    • /
    • pp.1132-1138
    • /
    • 2008
  • The study was carried out to investigate adsorption characteristic on hydrogen sulfide (H$_2$S) and methylmercaptan (CH$_3$SH) odor gas using the char made by a thermal decomposition of sewage sludge. The fixed bed adsorption experiments of the optimum L/D ratio could be 1.0, and adsorption capacity and break point increased with the increase of temperature. A simultaneous adsorption characteristic of H$_2$S and CH$_3$SH increased in breakthrough time and adsorption capacity more than single adsorption experiment, and CH$_3$SH had higher effective diffusivities than H$_2$S in same condition. The adsorption capacity of CH$_3$SH increased with fast velocity. When it was compared the produced absorbent with commercial activated carbon, As to adsorbent amount, it was H$_2$S 77% and CH$_3$SH 80% of commercial activated carbon.

Studies on the Treatment of Nickel ion Containing Wastewater by Manganese Nodule Bed Column Adsorption (니켈 함유(含有) 폐수(廢水)의 망간단괴(團塊) 고정층(園定層) 연속(連續) 흡착(吸着) 처리(處理))

  • Baek, Mi-Hwa;Shin, Myung-Sook;Kim, Dong-Su;Jung, Sun-Hee;Park, Kyoung-Ho
    • Resources Recycling
    • /
    • v.15 no.3 s.71
    • /
    • pp.66-73
    • /
    • 2006
  • Continuous column adsorption experiments have been conducted fur artificial and actual wastewater which containing $Ni^{2+}$ by using manganese nodule as an adsorbent for the purpose of wastewater treatment along with an increased $Ni^{2+}$ recovery in the refining of manganese nodule. The adsorption features of $Ni^{2+}$ artificial wastewater were examined by taking the height of fixed bed, influent flow rate, and the initial concentration of adsorbate as the influential parameters. The adsorption capacity of manganese nodule and the rate constant for $Ni^{2+}$ adsorption were estimated employing Bohart-Adams equation. In addition, the variation of the adsorbed amount of adsorbate for each column according to the influent flow rate and the initial concentration of adsorbate was investigated based on the breakthrough curves fur each column. For serially connected columns, the adsorbed amount of $Ni^{2+}$ for each column was observed to increase gradually as the adsorption proceeded from the initial column to the final column. The variation of the breakthrough curve for actual wastewater with the height of fixed bed was not so significant as that for artificial wastewater, which was considered to be due to the high concentration of $Ni^{2+}$ in actual wastewater. Regarding the effect of the particle size of manganese nodule on adsorption, the adsorbed amount of adsorbate was found to somewhat increase as the particle size became smaller.

Development of Adsorbents for Removal of Hydrogen Sulfide and Ammonia Using Carbon Black from Pyrolysis of Waste Tires (폐타이어 열분해에 의한 카본블랙을 이용한 황화수소와 암모니아 제거를 위한 흡착제 개발)

  • Seo, Yang-Gon;Kim, Chang-Joon;Kim, Dae Hyeok
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.108-116
    • /
    • 2015
  • Hydrogen sulfide and ammonia are one of the common malodorous compounds that can be found in emissions from many sewages treatment plants and industrial plants. Therefore, removing these harmful gases from emissions is of significance in both life and industry because they can cause health problems to human and detrimental effects on the catalysts. In this work, pyrolytic carbon blacks from waste tires were used to develop adsorbent with good adsorption capacity for removal of hydrogen and ammonia. Pellet-type adsorbents were prepared by a mixture of carbon black, metal oxide and sodium hydroxide or hydrochloric acid, and their adsorption capacities were estimated by using breakthrough curve of a continuous fixed bed adsorption column at ambient condition. The adsorbent manufactured with a mixture of carbon black, iron oxide(III) and sodium hydroxide showed the maximum working capacity of hydrogen sulfide. For ammonia, maximum working capacity was obtained by the adsorbent manufactured with a mixture of carbon black, copper oxide(II) and hydrochloric acid.

The Removal Characteristics of Bromate using Various Materials in GAC Process (다양한 재질의 활성탄을 이용한 GAC 공정에서의 브로메이트 제거 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Jung, Chul-Woo;Park, Jin-Sik;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.747-752
    • /
    • 2009
  • This research was performed by means of several different virgin granular activated carbons (GAC) made of each coal, coconut and wood, and the GACs were investigated for an adsorption performance of bromate in a continuous adsorption column. Breakthrough behavior was investigated that the breakthrough points of the virgin two coals-, coconut- and wood-based GACs were observed as 9252 bed volume (BV), 6821 BV, 5291 BV and 2431 BV, respectively. The experimental results of adsorption capacity (X/M) for bromate showed that two coal- based GACs were highest (1334.5 and 798.2 ${\mu}g$/g), the coconut-based GAC was intermediate (668.6 ${\mu}g$/g) and the wood-based GAC was lowest (156.8 ${\mu}g$/g). The X/M of the coal-based GACs was 2~8.5 times higher than the X/M of the coconut-based and wood-based GACs. The results of carbon usage rates (CURs) for the virgin two coal-, coconut- and wood-based GACs were shown as 0.19, 0.25, 0.33 and 0.71 g/day respectively. The adsorption capacity, k values, were also investigated by means of the GACs for bromate. The k values of two coal-, coconut- and wood- based GACs for bromate were found to be 121.3, 76.7, 43.3 and 14.6 respectively. This results suggested that using the virgin GAC made of coal was the best selection for removal of bromate in the water treatment for an advanced treatment.

Magnetite for phosphorus removal in low concentration phosphorus-contained water body

  • Xiang, Heng;Liu, Chaoxiang;Pan, Ruiling;Han, Yun;Cao, Jing
    • Advances in environmental research
    • /
    • v.3 no.2
    • /
    • pp.163-172
    • /
    • 2014
  • Magnetite was chosen as a typical adsorbent to study its phosphate adsorption capacity in water body with low concentration of phosphorus (below $2mg\;PL^{-1}$). Magnetite was collected from Luoyang City, Henan Province, China. In this research, three factors have been studied to describe the adsorption of phosphate on magnetite, which was solution concentration (concentration ranging from 0.1 to $2.5mg\;PL^{-1}$), suspension pH (1 to 13) and temperature (ranging from $10^{\circ}C$ to $40^{\circ}C$). In addition, the modified samples had been characterized with XRD and FE-SEM image. The results show that iron ions contains in magnetite were the main factors of phosphorus removal. The behavior of phosphorus adsorption to substrates could be fitted to both Langmuir and Freundlich isothermal adsorption equations in the low concentration phosphorus water. The theoretical saturated adsorption quantity of magnetite is 0.158 mg/g. pH has great influence on the phosphorus removal of magnetite ore by adsorption. And pH of 3 can receive the best results. While temperature has little effect on it. Magnetite was greatly effective for phosphorus removal in the column experiments, which is a more practical reflection of phosphorous removal combing the adsorption isotherm model and the breakthrough curves. According to the analysis of heavy metals release, the release of heavy metals was very low, they didn't produce the secondary pollution. The mechanism of uptake phosphate is in virtue of chemisorption between phosphate and ferric ion released by magnetite oxidation. The combined investigation of the magnetite showed that it was better substrate for water body with low concentration of phosphorus.