Studies on the Treatment of Nickel ion Containing Wastewater by Manganese Nodule Bed Column Adsorption

니켈 함유(含有) 폐수(廢水)의 망간단괴(團塊) 고정층(園定層) 연속(連續) 흡착(吸着) 처리(處理)

  • Baek, Mi-Hwa (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Shin, Myung-Sook (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kim, Dong-Su (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Jung, Sun-Hee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Park, Kyoung-Ho (Mineral and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources)
  • 백미화 (이화여자대학교 환경학과) ;
  • 신명숙 (이화여자대학교 환경학과) ;
  • 김동수 (이화여자대학교 환경학과) ;
  • 정선희 (이화여자대학교 환경학과) ;
  • 박경호 (한국지질자원연구원 자원활용소재연구부)
  • Published : 2006.06.01

Abstract

Continuous column adsorption experiments have been conducted fur artificial and actual wastewater which containing $Ni^{2+}$ by using manganese nodule as an adsorbent for the purpose of wastewater treatment along with an increased $Ni^{2+}$ recovery in the refining of manganese nodule. The adsorption features of $Ni^{2+}$ artificial wastewater were examined by taking the height of fixed bed, influent flow rate, and the initial concentration of adsorbate as the influential parameters. The adsorption capacity of manganese nodule and the rate constant for $Ni^{2+}$ adsorption were estimated employing Bohart-Adams equation. In addition, the variation of the adsorbed amount of adsorbate for each column according to the influent flow rate and the initial concentration of adsorbate was investigated based on the breakthrough curves fur each column. For serially connected columns, the adsorbed amount of $Ni^{2+}$ for each column was observed to increase gradually as the adsorption proceeded from the initial column to the final column. The variation of the breakthrough curve for actual wastewater with the height of fixed bed was not so significant as that for artificial wastewater, which was considered to be due to the high concentration of $Ni^{2+}$ in actual wastewater. Regarding the effect of the particle size of manganese nodule on adsorption, the adsorbed amount of adsorbate was found to somewhat increase as the particle size became smaller.

망간단괴 제련 과정에서 니켈 이온의 회수량을 높임과 동시에 니켈 폐수를 제거하기 위한 기초 연구를 수행하기 위해 인공니켈 폐수와 실폐수에 대해 흡착제로 망간단괴를 사용하여 고정층 연속 흡착 실험을 하였다. 인공니켈폐수에 대한 고정층 흡착 칼럼의 충전층 높이, 유입수의 유량, 그리고 유입되는 니켈폐수의 농도를 변화시키면서 흡착 특성의 변화양방을 검토하였다. 흡착실험의 결과를 Bohart-Adams식에 적용하여 고정층 칼럼에서의 흡착량 및 흡착속도상수를 계산하여 비교하였다. 또한 고정 흡착층 파과곡선으로부터 유입수의 유량과 흡착질의 초기농도의 변화에 따른 각 칼럼의 흡착량의 변화를 검토하였다. 직렬 연결 칼럼들에 대해 초기 칼럼에서 최종 칼럼으로 흡착이 진행됨에 따라 흡착량은 상승하는 것으로 파악되었다. 실폐수를 고정층 칼럼에 유입하여 흡착특성을 살펴 본 결과, 충전층 높이에 따른 흡착양상의 변화가 인공폐수와 달리 뚜렷하게 관찰되지 않았는데 이는 인공폐수에 비해 실폐수 중의 $Ni^{2+}$의 농도가 현저히 높기 때문인 것으로 판단되었다. 실폐수의 흡착율에 미치는 망간단괴 입자크기의 영향에 대한 검토에서는 흡착제 입자가 작아질수록 니켈 이온의 흡착율이 다소 상승하는 것으로 파악되었다.

Keywords

References

  1. Kumari, A. and Natarajan, K. A., 2002: Cathodic reductive dissolution and surface adsorption behavior of ocean manganese nodules, Hydrometallurgy, 64(3), pp 247-255 https://doi.org/10.1016/S0304-386X(02)00043-9
  2. Parida, K. M. and Mohanty, S., 1998: Studies on indian ocean manganese nodules. VIII. Adsorption of aqueous phosphate on ferromanganese nodules, Journal of Colloid and Interface Science, 199(1), pp 22-27 https://doi.org/10.1006/jcis.1997.5194
  3. Parida, K. M., Gorai B. and Das, N. N., 1997: Studies on indian ocean manganese nodules, Journal of Colloid and Interface Science, 187(2), pp 375-380 https://doi.org/10.1006/jcis.1996.4706
  4. Parida, K., Satapathy, P. K. and Das, N. 1996: Studies on indian ocean manganese nodules: IV. Adsorption of some bivalent heavy metal ions onto ferromanganese nodules, Journal of Colloid and Interface Science, 181(2), pp 456-462 https://doi.org/10.1006/jcis.1996.0402
  5. Parida, K. M., Mallick, S. Mohapatra, B. K. and Misra, V. N., 2004: Studies on manganese-nodule leached residues: I. Physicochemical characterization and its adsorption behavior toward Ni2+ in aqueous system, J. Colloid and Interface Science, 277(1), pp 48-54 https://doi.org/10.1016/j.jcis.2004.04.057
  6. 박경호, 노범식, 손정수, 이재장, 1998 망간단괴를 이용한 니켈 이온의 흡착 거동, 대한금속학회지, 36(2), pp 279-283
  7. Zoroddu, M. A., Peana, M. Kowalik-Jankowska, T., Hozlowski, H. and Costa, M., 2004: Nickel(II) Binding to Cap43 Protein Fragments, Journal of Inorganic Biochemistry, 98, pp 931-939 https://doi.org/10.1016/j.jinorgbio.2004.03.005
  8. Gupta, S. S. and Bhattacharyya, K. G. 2005: Adsorption of Ni(II) on clays, Journal of Colloid and Interface Science, in press
  9. Chen, J. P. and Wang, X., 2000: Removing copper, zinc, and lead ion by granular activated carbon in pretreated fixed-bed columns, Separation and Purification Technology, 19(3), pp 157-167 https://doi.org/10.1016/S1383-5866(99)00069-6
  10. Sparks, D. L., 1995: Environmental Soil Chemistry, pp 42-3, Academic Press, Inc., California
  11. Goel, J. et al., 2005: Removal of lead(II) by adsorption using treated granular activated carbon: Batch and column studies, J. Hazardous Materials B, 125, pp 211-20 https://doi.org/10.1016/j.jhazmat.2005.05.032
  12. Kurdu, S. and Gupta, A. K., 2005: Analysis and modeling of fixed bed column operations on As(V) removal by adsorption onto iron oxide-coated cement(IOCC), J. Colloid and Interface Science, 290, pp 52-60 https://doi.org/10.1016/j.jcis.2005.04.006
  13. 임진관 등, 2005: 고정층 활성탄 흡착반응기에서 기상 툴루엔의 흡착특성, 한국환경과학회지, 14, pp 61-69 https://doi.org/10.5322/JES.2005.14.1.061