• Title/Summary/Keyword: breakthrough adsorption capacity

Search Result 120, Processing Time 0.029 seconds

Adsorption Characteristics of H2S on Adsorbent Made by Sewage Sludge in Fixed Bed Adsorption Column (하수슬러지를 활용하여 제조한 흡착제의 고정흡착층에서의 H2S 흡착특성)

  • Park, Chun-Dong;Youn, Ju-Young;Park, Yeong-Seong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.718-722
    • /
    • 2012
  • $H_2S$ adsorption characteristics of adsorbent made by sewage sludge were investigated. For analyses of the manufactured adsorbent, various methods such as Iodine adsorptivity, scanning electron microscope (SEM), and measurements of BET surface area and pore volume were adopted. As the major adsorption characteristic, breakthrough curve was measured by using a continuous fixed bed adsorption column for operating variables such as adsorption temperature ($25{\sim}45^{\circ}C$), aspect ratio (L/D)(3~9), gas flow rate (0.1~2.0 liter/min) and $H_2S$ gas concentration (50~200 ppm). The experimental result showed that the carbonization and activation of sewage sludge are very important for the improvement in $H_2S$ adsorption capacity.

Adsorption Characteristics of CO2 on Activated Carbons Treated with Alkali-metal Salts (알칼리금속염으로 처리된 활성탄에 대한 CO2의 흡착특성)

  • Ryu, Dong Kwan;Kim, Sung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.286-293
    • /
    • 1998
  • Two methods were used to enhance the adsorption capacity of activated carbons. One is to impregnate activated carbons with chemical compounds which have a good affinity for $CO_2$. The other is to activate by heat-treating after impregnation with KOH on activated carbons(AC). The chemical compounds impregnated on AC were alkali metal, alkaline earth metal, and transition metal chlorides. The adsorption capacity of $CO_2$ on AC impregnated with these metals was less than that of pure AC. These compounds have not the chemical affinity for $CO_2$ and obstruct the micropore of AC. The experiment of breakthrough for $CO_2$ on AC impregnated with KOH showed the increase of the adsorbed amount of $CO_2$ in influent gases containing water vapor. This means that KOH adsorbes $CO_2$ gas. However, the adsorbents impregnated with KOH had not the reproducibility because of the production of $K_2CO_3$ by the reaction of KOH with $CO_2$. The amount of $CO_2$ adsorbed on the heat-treated AC at $800^{\circ}C$ increased with the amount of impregnation. The adsorption capacity of $CO_2$ was the largest when the ratio of weight of KOH to AC equal to 4. The isosteric heat of adsorption was calculated by the equation of Clausius-Clapeyron form adsorption capacity data of $CO_2$ for the temperature change. In addition, the characteristics of $CO_2$ breakthrough curve were surveyed for the change of flow rate and concentration.

  • PDF

Comparison of Adsorption Characteristics on Zeolite 13X and Silica-aluminar (제올라이트 13X와 실리카-알루미나의 흡착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;An, Chang-Doeuk;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.729-736
    • /
    • 2011
  • This work is to compare the experiment results by a continuous fixed-bed adsorption of water vapor, acetone vapor, and toluene vapor on zeolite 13X (SAU) and silica-alumina (SAK). SAU and SAK have very different pore structure but similar composition as inorganic adsorbent. The relationship between the equilibrium adsorption capacity and specific pore size range were studied. Adsorption of water vapor was more suitable on SAU than SAK because SAU has relatively more developed pores around $5\;\AA$ than SAK in the pore range of $10\sim100\;\AA$. Adsorption of acetone vapor was more suitable on SAK than SAU because SAK has relatively more developed pores around $5\sim10\;\AA$ than SAK in the pore range of less than $10\;\AA$. Adsorption of toluene vapor was more suitable on SAK than SAU because SAK has relatively more developed pores in the pore range of $10\sim100\;\AA$ than SAK. Adsorption capacity of the adsorbent was closely related to the surface area generated in the specific pore size region. But it was difficult to distinguish the relationships between adsorption capacity and micro area, and the external surface area of adsorbent.

Hydrogels with diffusion-facilitated porous network for improved adsorption performance

  • Pei, Yan-yan;Guo, Dong-mei;An, Qing-da;Xiao, Zuo-yi;Zhai, Shang-ru;Zhai, Bin
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2384-2393
    • /
    • 2018
  • Porous alginate-based hydrogel beads (porous ABH) have been prepared through a facile and sustainable template-assisted method using nano-calcium carbonate and nano-$CaCO_3$ as pore-directing agent for the efficient capture of methylene blue (MB). The materials were characterized by various techniques. The sorption capacities of ABH towards MB were compared with pure sodium alginate (ABH-1:0) in batch and fixed-bed column adsorption studies. The obtained adsorbent (ABH-1:3) has a higher BET surface area and a smaller average pore diameter. The maximum adsorption capacity of ABH-1:3 obtained from Langmuir model was as high as $1,426.0mg\;g^{-1}$. The kinetics strictly followed pseudo-second order rate equation and the adsorption reaction was effectively facilitated, approximately 50 minutes to achieve adsorption equilibrium, which was significantly shorter than that of ABH-1:0. The thermodynamic parameters revealed that the adsorption was spontaneous and exothermic. Thomas model fitted well with the breakthrough curves and could describe the dynamic behavior of the column. More significantly, the uptake capacity of ABH-1:3 was still higher than 75% of the maximum adsorption capacity even after ten cycles, indicating that this novel adsorbent can be a promising adsorptive material for removal of MB from aqueous solution under batch and continuous systems.

Desulfurization of Diesel by Selective Adsorption of Sulfur Compounds over Zeolite and Activated Carbon (제올라이트와 활성탄에서의 황화합물 선택 흡착에 의한 경유 탈황)

  • Park, Jung Geun;Ko, Chang Hyun;Bhandari, Vinay M.;Lee, Yongtaek;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.588-594
    • /
    • 2005
  • We have investigated Y zeolite and activated carbon for an adsorptive desulfurization of diesel. In batch experiments, cation ($Cu^{2+}$, $Ni^{2+}$) exchanged Y zeolites showed high equilibrium adsorption capacity for sulfur compounds in model diesel, which contained BT, DBT and 4,6-DMDBT of each 50 ppmw in n-octane. But the cation exchanged Y zeolites lost its capacity in commercial diesel (186 ppmw). On the other hand, activated carbon showed reasonable adsorption capacity for sulfur compounds in both model and commercial diesel. The adsorption capacity of sulfur on Ni-Y zeolite was decreased with the increase of benzene concentration in model diesel but the sorption capacity on activated carbon was insensitive to aromatic concentration. In breakthrough test, activated carbon of 1 g could treat 15 ml of commercial diesel with 186 ppmw sulfur. Toluene showed good solvent for regenerating activated carbon among several solvents.

The Evaluation of Adsorption Characteristics of Perfluorinated Compounds (PFCs) in GAC Process Using Continuous Column Adsorption Test (연속 컬럼흡착 실험을 이용한 GAC 공정에서의 과불화 화합물(PFCs) 흡착 특성 평가)

  • Son, Hee-Jong;Yoo, Soo-Jeon;Jang, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.206-212
    • /
    • 2013
  • This study accessed the adsorption characteristics of the 11 perfluorinated compounds (PFCs) on coal-based granular activated carbon (GAC). The breakthrough appeared first for PFODA and sequentially for PFHDA, PFTeDA, PFTDA, PFDoDA, PFUnDA, PFDA, PFNA, PFOA, PFOS, and PFHpA. The maximum adsorption capacity (X/M) for the 11 PFCs with apparent breakthrough points ranged from 2.43 ${\mu}g/g$ (for PFODA) to 64.5 ${\mu}g/g$ (for PFHpA). Carbon usage rate (CUR) for PFODA was 0.291 g/day, 11.2 times higher than that for PFHpA (0.026 g/day). The X/M values for the 11 PFCs were fitted well with a linear regression ($r^2$ = 0.89) by their molecular weight (chain length).

Removal of Dissolved Organic Matters in Drinking Water by GAC adsorption using RSSCT (RSSCT를 이용한 GAC의 상수원수 내 용존유기물질 제거)

  • Kim, Young Il;Bae, Byung Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.727-736
    • /
    • 2006
  • Granular activated carbon (GAC) has been identified as a best available technology (BAT) by the United States Environmental Protection Agency (USEPA) for removal disinfection by-product (DBP) precursors, such as dissolved organic carbon (DOC) and dissolved organic nitrogen (DON). Rapid small-scale column test (RSSCT) were used to investigate four types of carbon (F400, Norit1240, Norit40S, and Aquasorb1500) for their affinity to absorb natural organic matter (NOM). DOC, $UV_{254}$, and Total dissolved nitrogen (TON) concentrations were measured in the column effluent to track GAC breakthrough. DOC and $UV_{254}$ breakthrough occurred at around 3500 bed volumes (BVs) of operation for all GACs investigated. The $UV_{254}$ breakthrough curves showed 33% to 48% at 8000 BVs, when the DOC was 48% to 65%. All GACs showed greater removal in DOC than $UV_{254}$. The NORIT1240 GAC was determined to have the highest adsorption capacity for DOC and $UV_{254}$. The removal of nitrate (NOTN) had not broken through over BVs. The initial TON breakthrough curves were started around 50%, when the DOC breakthrough was only 10 % at 500 BVs. The curves were gradually increased after 3500 BVs and approximately 69% through 81% of TON breakthrough occurred at 8000 BVs. All of the GACs were able to remove TON, in the case of this investigation the majority of the TON was present as DON. Because nitrate nitrogen was seldom removed and ammonium nitrogen ($NH_3-N$) was not detected in the effluent from RSSCTs even though raw water. The carbon usage rate of DOC was from 2 to 6 times less than that of TON. The NORIT1240 GAC demonstrated the best performance in terms of DOC removal, while the F400 GAC was best in terms of TON removal. Excitation emission matrix(EEM) analysis was used to show that GAC adsorption successfully removed most of Humic-like DOC and Fulvic-like DOCs. However, soluble microbial product(SMP)-like DOC in the absence of raw water were detected in the NORIT40S and Aquasorb1500 GAC. The authors assumed that this results is due probably to the part of GAC in the RSSCT which was converted into biological activated carbon(BAC). To compare with organics removal by GAC according to preloading, the virgin GACs had readily accessible sites that were adsorbed DOC more rapidly than preloaded GACs, but the TDN removal had not showed differences between those GACs.

Selective Adsorption of Sulfur Compounds from Natural Gas Fuel Using Nanoporous Molecular Sieves (나노세공 분자체를 이용한 천연가스 연료로부터 황 화합물의 선택적 흡착)

  • Kim, Hoon-Sung;Chung, Jong-Kook;Lee, Seok-Hee;Cheon, Jae-Kee;Moon, Myung-Joon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.64-71
    • /
    • 2007
  • The selection of a suitable adsorbent for removing organic sulfur compounds tetrahydrothiophene (THT) and t-butylmercaptan (TBM) from natural gas has been carried out. The saturation adsorption capacity for the sulfur compounds were determined by pulse adsorption method for a group of nanoporous materials, including Na-Y, Na-ZSM-5, Na,K-ET(A)S-10, Na-Mordenite, Na,K-Clinoptitolite, Ti/MCM-41, Ti/SBA-15 and amorphous titanosilicates. Among the materials tested, Na-Y and Na,K-ET(A)S-10 zeolites showed high adsorptive capacities for THT and TBM. The saturation capacity for THT on Na,K-ETS-10 was comparable with that on Na-Y zeolite, which is well known as an effective adsorbent. The capacity and adsorptivity for THT and TBM on Na,K-ETAS-10 were improved by an increase in crystallinity of Na,K-ETAS-10. An investigation of the competitive adsorption between THT and TBM from the breakthrough test using a simulated natural gas indicates that Na,K-ETS-10 selectively adsorbs THT. The breakthrough capacity for THT on Na,K-ETS-10 was 1.19 mmol/g. The results show that the high adsorption performance of Na.K-ETS-10 and Na,K-ETAS-10 is due to the highly exchanged cations in the zeolitic structure which exhibit the strong electrostatic interactions with organic sulfur compounds and their wide pore nature.

  • PDF

Adsorption/desorption of CO2 on Activated Carbon Fibers Using Electric Swing Adsorption (활성탄소섬유상에서 전기변동법을 이용한 CO2의 흡/탈착)

  • Shim, JaeWoon;Moon, SeungHyun
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.432-437
    • /
    • 2005
  • An electric swing adsorption (ESA) process for recovering highly pure $CO_2$ from the mixed gases was tested. In this study, activated carbon fibers were used as an adsorbent. The activated carbon fibers showed fast adsorption rate and the high adsorption capacity for $CO_2$ adsorption under the condition of the ambient pressure. Activated carbon fiber with higher specific surface area was suitable to repeated adsorption-desorption cycle process, showing consistent breakthrough curve. Especially, the regeneration method by vacuum combined with ESA improved the performance of desorption process by an additional 17% regeneration efficiency compared to a vacuum only method, and showed the high regeneration efficiency at comparatively low 7-8 Wh energy.

Fixed Bed Study for a Detritiation Adsorber

  • Kim K. R.;Lee M. S.;Paek S.;Yim S. P,;Ahn D. H.;Chung H.;Shim M. H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.119-125
    • /
    • 2005
  • A method of predicting the tritium concentration in the air leaving an atmospheric detritiation dryer was modeled for designing a fixed bed dryer and preparing an advanced dryer control. In order to quantify the bed utilization and the dynamic capacity against an inlet humidity and a flow rate, a series of quantitative tests based on the break-through behavior were carried out in an isothermal fixed bed of synthetic zeolites such type as molecular sieve 4A, 5A, 13X and mordenite. The amount of water vapor breaking during the adsorption was estimated to give a breakthrough capacity at the various inlet flow rates and humidity conditions. The molecular sieve 13X exhibited a better adsorption performance at a given bed height.

  • PDF