• Title/Summary/Keyword: breaking region

Search Result 111, Processing Time 0.029 seconds

Weathering and Termite Resistance of Woodflour-Recycled Polypropylene Composites in Tropical Region

  • Febrianto, Fauzi;Sulaeman, Rudianda;Karina, Myrtha;Ashaari, Zaidon;Hadi, Yusuf Sudo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.88-97
    • /
    • 2006
  • Wood flour (WF)-recycled polypropylene (RPP) composites composed of 50% WF of Eucalyptus deglupta Blume species, 50% RPP, various contents of maleic anhydride (MAH) modifier (0; 1; 2; 5; 5; 7.5; and lo%), and 15% dicumyl peroxide (DCP) initiator (based on MAH weight) were subjected to weather for 1 year and subterranean termite (Coptotermes cuwignathus HOLMGREN) and dry wood termite (Cryptotermes cynocephalus LIGHT) for 3 and 4 weeks, respectively. WF-RPP composites with 2.5% MA modifier had tensile strength, breaking elongation and Young's modulus about 2.2, 2.3, and 1.2 times, respectively higher compared to MAH-free composites. The WF-RPP composites with or without MAH modifier had 5.5 times higher resistance to weather compared to RPP film alone. The color of the WF-RPP composites with or without MAH modifier became lighter after exposures to the weather. The WF-RPP composites with or without MAH modifier are resistant to subterranean termite Coptotermes curvignathus HOLMGREN and dry wood termite Cryptotermecs cynocephalus LIGHT under the experimental condition adopted.

INVESTIGATION ON EFFECTS OF ENLARGED PIPE RUPTURE SIZE AND AIR PENETRATION TIMING IN REAL-SCALE EXPERIMENT OF SIPHON BREAKER

  • Kang, Soon Ho;Lee, Kwon-Yeong;Lee, Gi Cheol;Kim, Seong Hoon;Chi, Dae Young;Seo, Kyoungwoo;Yoon, Juhyeon;Kim, Moo Hwan;Park, Hyun Sun
    • Nuclear Engineering and Technology
    • /
    • v.46 no.6
    • /
    • pp.817-824
    • /
    • 2014
  • To ensure the safety of research reactors, the water level must be maintained above the required height. When a pipe ruptures, the siphon phenomenon causes continuous loss of coolant until the hydraulic head is removed. To protect the reactor core from this kind of accident, a siphon breaker has been suggested as a passive safety device. This study mainly focused on two variables: the size of the pipe rupture and the timing of air entrainment. In this study, the size of the pipe rupture was increased to the guillotine break case. There was a region in which a larger pipe rupture did not need a larger siphon breaker, and the water flow rate was related to the size of the pipe rupture and affected the residual water quantity. The timing of air entrainment was predicted to influence residual water level. However, the residual water level was not affected by the timing of air entrainment. The experimental cases, which showed the characteristic of partical sweep-out mode in the separation of siphon breaking phenomenon [2], showed almost same trend of physical properties.

Reduction of the Electric Field Concentration at the Triple Junction of the Vacuum Interrupter by Using the Application of Functionally Graded Material (기능성 경사 재료의 적용을 통한 진공 인터럽터의 삼중점 전계 완화)

  • Choi, Seung-Kil;Gu, Chi-Wuk;Ju, Heung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.630-635
    • /
    • 2015
  • A vacuum Interrupter (VI), a core part that composes the breaking part of medium-voltage vacuum circuit breaker (VCB), has the excellent insulation performance and arc-extinguishing capability. $SF_6$ gas had been used for the external insulation of VIs since the dielectric strength of $SF_6$ gas is superior to that of other insulation gases. However, because of environmental problems related with global warming, a solid-insulated technology was recently researched. The functionally graded material (FGM), as changing spatially the distribution of the relative permittivity inside an insulator, can reduce the electric field stress at the specific region. Especially, the external insulation performance of the VI with the molded FGM insulator is greatly improved as compared with that of the existing VI or the VI with a new external shield. In this paper, the effectiveness of this FGM insulator is verified by the numerical simulation.

A study on the measurement of ice in the Arctic region (At Svalbard and Chukchi Sea on 2010 summer) (빙해역의 빙상환경 계측에 관한 연구 (2010년 여름 Svalbard와 Chukchi Sea 근해))

  • Kim, Hyun Soo
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • The measurement of ice properties such as thickness, strength are important to know the performance of the ice breaking vessel. The measuring equipment of ice properties and methods are summarized in this paper. The actual measured data are also described. The strength of ice at Svalbard area on April 2010 is much stronger than the Chukchi Sea on August 2010. The mean strength of Svalbard is about 500 kPa and one of Chukchi Sea is 250 kPa. The first sea trial in Arctic sea using Araon was carried out in the Chukchi Sea. The power and speed was also measured to check the ship performance in ice. The speed was measured from GPS(Global Positioning System) and engine power was recorded from DPS(Dynamic Positioning system) of Araon. The design target of Araon in level ice is 3 knots in 1m thickness and 630 kPa flexible strength but mean speed in Chuckchi sea is 3.98 knots when 6.6 MW engine power, 2.4m ice thickness and 250 kPa strength. This results comes from the difference of ice types and the weak flexible strength of ice but it will be a good information to know the performance of Araon in similar ice condition.

Prediction of Bow Flare Impact Pressure and Its Application to Ship Structure Design - Container Ship and PCC - (선수 플레어 충격압력 추정과 구조설계에의 응용 - 콘테이너선과 자동차 운반선 -)

  • 김용직;신기석;신찬호;강점문;김만수;김성찬;오수관;임채환;김대헌
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.29-36
    • /
    • 2003
  • In rough seas, bow-flare regions of the fine ships (container ship and PCC) are subject to high impact pressures due to the bow-flare slamming. And many ships suffer structural damages in that region, even though they were built under the bow structure strengthening rules of the ship classes. So, a new design method for bow-flare structure is highly required. In this paper, a new prediction method of the bow-flare impact pressure (in terms of equivalent static pressure) acting on the fine ships' bow is presented. This method is based on the 11 fine ships' damage analysis and the mechanisms of water entry impact and breaking wave impact. Calculation results of the bow-flare impact pressure and the shell plate thickness are shown and discussed. Through the example calculations, it was found that the present method is useful for the structure design of the fine ships' bow.

Experimental and numerical investigation of a surface-fixed horizontal porous wave barrier

  • Poguluri, Sunny Kumar;Kim, Jeongrok;George, Arun;Cho, I.H.
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Experimental and numerical investigations were conducted to study the performance of a surface-fixed horizontal porous wave barrier in regular waves. The characteristics of the reflection and transmission coefficients, energy dissipation, and vertical wave force were examined versus different porosities of the barrier. Numerical simulations based on 3D Reynolds Averaged Navier-Stokes equations with standard low-Re k-ε turbulent closure and volume of fluid approach were accomplished and compared with the experimental results conducted in a 2D wave tank. Experimental measurements and numerical simulations were shown to be in satisfactory agreement. The qualitative wave behavior propagating over a horizontal porous barrier such as wave run-up, wave breaking, air entrapment, jet flow, and vortex generation was reproduced by CFD computation. Through the discrete harmonic decomposition of the vertical wave force on a wave barrier, the nonlinear characteristics were revealed quantitatively. It was concluded that the surface-fixed horizontal barrier is more effective in dissipating wave energy in the short wave period region and more energy conversion was observed from the first harmonic to higher harmonics with the increase of porosity. The present numerical approach will provide a predictive tool for an accurate and efficient design of the surface-fixed horizontal porous wave barrier.

3D-Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (혼성방파제의 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 3차원수치시뮬레이션)

  • Choi, Goon-Ho;Jun, Jae-Hyoung;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.180-201
    • /
    • 2020
  • It has been widely known that the effect of diffracted waves at the tip of composite breakwater with finite length causes the change of standing wave height along the length of breakwater, the spatial change of wave pressure on caisson, and the occurrence of meandering damage on the different sliding distance in sequence. It is hard to deal with the spatial change of wave force on trunk of breakwater through the two-dimensional experiment and/or numerical analysis. In this study, two and three-dimensional numerical techniques with olaFlow model are used to approach the spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, it is thoroughly studied the mean wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis. In conclusion, it is confirmed that the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure checked by not two-dimensional analysis, but three-dimensional analysis through the change of wave pressure applied to the caisson along the length of breakwater.

Numerical Simulation of Wave Pressure Acting on Caisson and Wave Characteristics near Tip of Composite Breakwater (for One Directional Irregular Waves) (혼성방파제 케이슨에 작용하는 파압과 선단 주변에서 파랑특성에 관한 수치모의(일방향불규칙파에 대해))

  • Jun, Jae-Hyoung;Choi, Goon-Ho;Lee, Kwang-Ho;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.531-552
    • /
    • 2020
  • In the previous study, both the wave characteristics at the tip of composite breakwater and on caisson were investigated by applying olaFlow numerical model of three-dimensional regular waves. In this paper, the same numerical model and layout/shape of composite breakwater as applied the previous study under the action of one directional irregular waves were used to analyze two and three-dimensional spatial change of wave force including the impulsive breaking wave pressure applied to trunk of breakwater, the effect of rear region, and the occurrence of diffracted waves at the tip of caisson located on the high crested rubble mound. In addition, the frequency spectrum, mean significant wave height, mean horizontal velocity, and mean turbulent kinetic energy through the numerical analysis were studied. In conclusion, the larger wave pressure occurs at the front wall of caisson around the still water level than the original design conditions when it generates the shock-crushing wave pressure in three-dimensional analysis condition. Which was not occurred by two-dimensional analysis. Furthermore, it was confirmed that the wave pressure distribution at the caisson changes along the length of breakwater when the same significant incident wave was applied to the caisson. Although there is difference in magnitude, but its variation shows the similar tendency with the case of previous study.

A Study on the Business Model for Value Added Petroleum Logistics in Northeast Asia (동북아 부가가치 석유물류 비즈니스 모델에 관한 연구)

  • Park Ji Woong;Lee Choong Bae
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.1
    • /
    • pp.149-172
    • /
    • 2023
  • In the Northeast Asian region, including Korea, China, and Japan, with rapid economic growth since the 1990s, intra-regional oil logistics has been increasing. Under such external circumstances, Korea has been pursuing a policy to become a Northeast Asian petroleum logistics hub since the mid-2000s. In order to become a Northeast Asian logistics hub, it is important to establish and promote a business model to promote the value-added oil logistics business. This study aims to propose policies and practical implications for increasing petroleum logistics by analyzing Korea's petroleum logistics business model in Northeast Asia. The results of case analysis through interviews with 23 tank terminal companies are as follows. First, most of the oil storage tank terminal companies interviewed are conducting value-added petroleum logistics such as blending, breaking bulk, and consolidation etc. Second, value-added petroleum logistics is caused by an imbalance in supply and demand among neighboring countries in Northeast Asia. In particular, there is a high demand for breaking bulk and blending connecting Japan, Oceania, the United States, and South America. Third, it is necessary to promote the promotion of value-added logistics by improving infrastructure, institutions, and regulations in response to the demand for value-added petroleum logistics, which will greatly contribute to Korea's policy for being Northeast Asian oil hub.

Chemical Effects of Nuclear Transformations in Metal Salts (金屬鹽의 原子核變換의 化學的 效果)

  • Byung Hun Lee;Jong Du Lee
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.331-338
    • /
    • 1975
  • The distribution of $^{51}Cr\;and\;^{128}I$ recoil species following radiative-neutron capture in chromates, dichromates, iodates and periodates has been investigated by using paper-electrophoresis. In view of the effective recoil energy and the effect of the internal conversion, it is unlikely that an atom which has captured a neutron can remain bound in its original molecule. It is also unlikely that the energy of the recoil atom is dissipated in heating a small region of the crystal. However, the results of paper-electrophoresis separation of recoil $^{51}Cr\;and\;^{128}I$ indicated that many more of the recoil atoms were bound in the parent molecule. The disorder model for the reaction was proposed from observations of retention. In considering cations, the greater their radii, the higher is the probability of the recoil atom breaking through the secondary cage. In ammonium salt, the ammonium ion behaved as a reducing agent in the disorder zone and resulted in low retention. Crystal structures with their greater free space have shown low retention.

  • PDF