• Title/Summary/Keyword: bread.

Search Result 1,081, Processing Time 0.027 seconds

Utilization of the Protein Hydrolysates of Skipjack Tuna Viscera (가다랭이 내장 단백질 가수분해물의 이용)

  • Kim, Sung-Min;Ha, Jung-Uk
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.141-146
    • /
    • 1995
  • For the effective utilization of skipjack tuna viscera, a study was carried out to investigate the applicability of viscera protein hydrolysate (VPH) as a protein supplement in the processing of imitation sauce and bread. The optimum extraction and hydrolyzation conditions for the production of viscera protein concentrate (VPC) and viscera protein hydrolysate (VPH) were determined. Boiled viscera could be extracted by ethyl alcohol without significant deterioration as a raw material for the further processing. High quality of VPH could be obtained by hydrolysis with 1% pepsin under its optimum condition $(pH\;1.65,\;37^{\circ}C)$. The solubilities of VPC and VPH were 40% and 90%, respectively, and the essential amino acid contents in two products were 48.7% and 63.2%, respectively. Especially, the content of taurine, a physiologically important amino acid, was 9.4% in VPH. In experimental preparations of imitation sauce and bread, panel test showed that the supplementation of 10% of VPH in imitation sauce and $3{\sim}5%$ of VPH in bread was well accepted in sensory characteristics such as color, flavor, taste and texture.

  • PDF

Rheological Properties of Dough and Quality Characteristics of Bread Containing Whey Ferment Cultured by L. acidophilus KCCM 32820 and P. freudenreichii KCCM 31227 (L. acidophilus KCCM 32820과 P. freudenreichii KCCM 31227로 배양한 유청발효물을 첨가한 반죽 레올로지 및 식빵의 품질특성)

  • Lee, Jeong-Hoon;Choi, Mi-Jung;Chung, Koo-Chun;Lee, Si-Kyung
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.803-809
    • /
    • 2012
  • This study was carried out to evaluate the effects of whey ferment containing L. acidophilus KCCM 32820 and P. freudenreichii KCCM 31227 on the quality characteristics of white pan bread. Instrumental analysis such as alveograph, gelatinization temperature, texture analysis, retrogradation rate was determined. In an alveograph test, $P_{max}$ value in the treatment was higher than that in the control, but extensibility of dough in the control showed to be higher than in the treatment, so test dough showed more strength than the control. In terms of DSC analysis for gelatinization, temperature there were no significant differences of $T_p$ and ${\Delta}H$ between the control and the treatment. In hardness analysis by rheometer, dough containing whey ferment revealed lower values than the control. From the analysis of the organic acid contents, propionic acid was not detected in the control, however 1.13 mg/g of propionic acid was detected in the treatment. In the retrogradation analysis by DSC, the test delayed slightly compared to the control.

Physicochemical Properties of Endosperm Starch and Breadmaking Quality of Rice Cultivars (쌀 품종의 배유 이화학적 특성에 따른 제빵 적성 비교)

  • Yoon, Mi-Ra;Chun, A-Reum;Oh, Sea-Kwan;Ko, Sang-Hoon;Kim, Dae-Jung;Hong, Ha-Cheol;Choi, Im-Soo;Lee, Jeong-Heui
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.3
    • /
    • pp.219-225
    • /
    • 2011
  • The physicochemical properties of rice endosperm from five rice varieties and effects of milling on baking bread properties of rice flour were investigated. Five rice varieties exhibited different level of amylose content. The ratio of longer amylopectin chain length to the distribution of endosperm starches was the highest in Goami3. According to the RVA measurement of rice flours, the pasting temperatures of Seolgaengbyeo and Goamibyeo were lower than those of the other rice varieties. There were differences in the changes of swelling power of rice flour under increasing temperature. Each rice flour sample for bread-making was processed into two different particle size by using an air-classification mill, and significant differences were observed among cultivars in the average particle size and damaged starch content of rice flours. Rice flour of Seolgaengbyeo with fine particle size showed the highest value in specific volume after baking.

Rheological Properties of Bread Dough Added with Enteromorpha intenstinalis (파래를 이용한 빵 반죽의 이화학적 물성에 관한 연구)

  • Lim, Eun-Jeong;Lee, Yoo-Hyun;Huh, Chai-Ok;Kwon, Soon-Hyung;Kim, Ji-Young;Han, Yong-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.652-657
    • /
    • 2007
  • This study was performed to evaluate the physicochemical and quality characteristics of bread with Enteromorpha intenstinalis added. In order to compare the physical and organoleptic properties, 1 to 4% of E. intenstinalis powder was mixed with the flour. Among the physical characteristics of the dough, the absorption ratio in the farinogram and the degree of attenuation increased with increasing amounts of E. intenstinalis powder, whereas the development time, dough stability, the degree of extension, the degree of resistance, and R/E became reduced. In the amylogram, there was no difference in the gelatinization starting temperature among the samples, but the maximum viscosity gradually increased according to increasing amounts of E. intenstinalis powder. Also, a sensory evaluation was carried out in terms of acceptability (color, flavor, moistness, tenderness, mouth feel, and overall acceptability). Taken together, the 2% treatment showed the highest evaluation values, as compared to the other treatments.

Effects of Enzymes and Emulsifiers on the Loaf Volume and Crumb Hardness of Rice Breads (효소제 및 유화제의 첨가가 쌀빵의 부피와 경도에 미치는 영향)

  • Lee, Myung-Hee;Chang, Hak-Gil;Lee, Young-Tack
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.761-766
    • /
    • 2008
  • The effects of various enzymes and emulsifiers on the loaf volume and crumb hardness of rice breads were studied. Four different enzymes [fungal ${\alpha}$-amylase (AMYL), maltogenic bacterial ${\alpha}$-amylase (NMYL), glucose oxidases (GO), and xylanase+hemicellulases (PTP)] and four emulsifiers [sorbitan monostearate (SMS), glycerol monostearate (GMS), sodium stearoyl lactylate (SSL), and glycerol ester+propylene glycol ester+sucrose ester+sorbitan ester (SP)] were supplemented to rice dough. The addition of AMYL, GO, and GO+AMYL increased loaf volume of rice breads. The highest loaf volume was observed in rice bread supplemented with AMYL. Rice breads supplemented with enzymes firmed at lower rates during storage, and AMYL, NMYL, and GO considerably decreased crumb hardness of rice breads, exhibiting a significant antistaling effect. The addition of emulsifiers produced rice breads with better specific loaf volume and crumb texture, and continuously retarded crumb hardness of rice breads during storage. Especially, rice bread supplemented with SSL demonstrated the highest loaf volume and the lowest crumb hardness during storage.

Rheological Properties of White Pan Bread Dough Prepared with Angelica gigas nakai Powder (당귀 분말을 첨가한 식빵 반죽의 물리적 특성)

  • Shin, Gil-Man;Kim, Dong-Young
    • Food Science and Preservation
    • /
    • v.15 no.4
    • /
    • pp.542-549
    • /
    • 2008
  • The effects of Angelica gigas nakai powder(AP) addition on bread dough were investigated by preparing dough with 0-10%(w/v) powder. Dough raising power, gluten levels, rapid visco properties, and falling number, were investigated. The rheological properties of dough as measured by mixography, farinography, alveography, color assessment, and with scanning electron microscopy, were examined. Increase in AP concentration resulted in a linear decrease in gluten content. Dough raising power and extensibility were decreased by water absorption rate, and resistance increased. Dough stability and rose when AP was present at 1-2%(w/v). Water absorption, dough stability, and dough valorimeter values also rose when AP was present at 1-2%(w/v), but AP induced weakness in the dough, as revealed through farinography, and also resulted in a lowering of initial pasting temperature and the temperature at peak viscosity. A decrease in viscosity at the peak point, and(as revealed by RVA), a decrease in extensibility, an increased resistance to extension, and a rise in the energy required for extension, were also seen when AP powder was added, as was an increase in the R/E ratio. Overall, the addition of AP to dough to levels of 1% or 2%(both w/v) is thought to be useful in the preparation of a functional white pan bread, and results in quality improvements.

Quality and Sensory Characteristics of White Bread added with Various Ginseng Products (인삼제품의 첨가에 따른 제빵적성 및 관능평가)

  • Song, Mi-Ran;Lee, Ka-Soon;Lee, Byeong-Chan;Oh, Man-Jin
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.369-377
    • /
    • 2007
  • This study investigated the effect of ginseng products on the baking properties of white breads. Flour was substituted by ginseng products (ginseng at levels 2, 4, 6, and 8%, all w/w, of flour levels). Both ginseng powder (GP) and red ginseng powder (RGP) were used. Similarly, red ginseng extract (RGE) was substituted at levels of 1, 2, 3, and 4% (all w/w) of flour. The physical properties of each dough were assessed using farinograms, extensograms, and amylograms. Water absorption increased as the proportions of ginseng products rose. The dough surface areas and R/E (resistance/extensibility) values decreased, as did peak viscosities, at the proportions of ginseng products increased. The pH values during fermentation decreased as the proportions of ginseng products increased. The fermentation power of dough with GP was lower than that of control, and higher than that of dough with RGP or RGE, but the addition of ginseng products beyond certain levels weakened the gas retention power: The specific loaf volumes of breads with 2% GP were the highest at 5.41 mL/g. In breads with RGE, the specificloaf volume increased from 5.52 mL/g to 5.82 mL/g as RGE levels rose from 0% to 4%. Hardness increased with rising GP and RGP levels in breads with GP and RGP, but decreased with RGE levels in breads with RGE. The moisture contents of breads during storage tended to be higher than control in breads with ginseng products. Lightness increased with addition of GP and decreased upon addition of RGP or RGE, while redness and yellowness increased after addition of any ginseng products. In sensory evaluation tests, the sensory scores for texture, color, mouth feel, and overall acceptability, were high, when any ginseng product (GP, RGP or RGE) was present at 2%. Of these breads, the bread with 2% RGE attained the highest sensory score.

Dough Properties and Quality Characteristics of Breads added with Barley Flour (보릿가루 첨가 복합분의 반죽 물성 및 빵의 품질 특성)

  • Ha, Dung-Minh;Park, Yang-Kyun;Kang, Jeong-Hwa;Kim, Myung-Hee
    • Food Science and Preservation
    • /
    • v.19 no.3
    • /
    • pp.344-353
    • /
    • 2012
  • This study was carried out to investigate the rheological properties of dough and the quality characteristics of breads with Saesalbori (non-waxy barley) and Saechalbori (waxy barley) flours added at concentrations of 10, 20, and 30% to wheat flour. The maximum viscosity increased in the Saesalbori flour mixtures and decreased in the Saechalbori flour mixtures. The dough stability of the 10% barley flour mixtures was equal to that of the control while that of the 30% barley flour mixtures decreased more. The extensibility of the dough decreased with the increasing level of barley flour in all the blends, but the resistance of the dough increased. As the ratio of barley flour increased, the loaf volume of the breads significantly decreased, but the bread weight increased. The 10% Saesalbori flour mixtures increased the hardness of the breads but did not cause any significant change in the other TPA parameters while the 10% Saechalbori flour mixtures did not cause any change in all the TPA parameters. The sensory evaluation results showed that the 10% barley flour mixtures had no significantly different overall acceptance from the control, and that the 20% substitution still resulted in acceptable sensory qualities. The results of the study also showed that the bread-making properties of Saesalbori were improved by germination, but those of Saechalbori declined.

Effects of Mulberry Leaf Powder on Physicochemical Properties of Bread Dough (뽕잎분말 첨가가 빵반죽의 이화학적 특성에 미치는 영향)

  • Kim, Young-Ho;Cho, Nam-Ji
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.705-713
    • /
    • 2010
  • This study was carried out to investigate the physicochemical properties of bread dough with added mulberry leaf powder. The crude protein, fiber and ash contents of the mulberry leaf powder were 21.25%, 7.70% and 9.27% respectively. The mulberry leaf-mixed powder showed low lightness and redness values and high yellowness. Farinograph water absorption increased as the mulberry leaf powder content increased. Both arrival and development times of the mulberry leaf powder-added dough were longer than those of wheat flour dough. As the mulberry leaf powder content increased, the degree of weakness increased. Maximum viscosity by amylograph analysis increased gradually with the addition of mulberry leaf powder, while gelatinization temperature was not affected. Degree of extension decreased as shown in extensograph analysis with increasing content of mulberry leaf powder.

Rheological properties of flour dough containing roasted rice bran (볶은 쌀겨를 첨가한 밀가루 반죽의 rheology 특성)

  • Shin, Hyun-Kwang;Lee, Jeong-Hoon;Chung, Koo-Chun;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.6
    • /
    • pp.587-593
    • /
    • 2018
  • This study was carried out to investigate the effect of roasted rice bran (RRB) on the rheological properties of bread dough. According to farinograph analysis, the consistency of the control sample was greatest. There were no significant differences in water absorption (p<0.05). Lower values of development time, stability, and time to breakdown, which were affected, by the addition of RRB, were observed for RRB-containing dough samples, compared to the control dough sample. Addition of RRB significantly increased the mixing tolerance index (MTI). According to rheofermentometer analysis, the values of H'm, $T^{\prime}_1$, and retention volume decreased with increase in the amount of RRB added. According to the rapid visco analyzer (RVA) analysis, peak viscosity, holding strength, and setback values were greater in the control than in the RRB-containing samples. The addition of RRB to the flour influenced rheological properties like fermentation volume and acidity. The total acidity increased with the increase in the amount of RRB added. The present study has indicated that there was no significant difference between the rheological properties of the control and 5% RRB-containing dough samples. Therefore, the addition of 5% RRB could be an effective way to produce functional flour bread without affecting its desirable physical properties.