• Title/Summary/Keyword: brassinazole

Search Result 2, Processing Time 0.021 seconds

Loss of Function in GIGANTEA Gene is Involved in Brassinosteroid Signaling

  • Hwang, Indeok;Park, Jaeyoung;Lee, Beomgi;Cheong, Hyeonsook
    • Journal of Integrative Natural Science
    • /
    • v.4 no.2
    • /
    • pp.113-120
    • /
    • 2011
  • Brassinosteroids (BRs) are plant steroid hormones that play essential roles in growth and development. Mutations in BR-signaling pathways cause defective in growth and development like dwarfism, male sterility, abnormal vascular development and photomorphogenesis. Transition from vegetative to reproductive growth is a critical phase change in the development of a flowering plant. In a screen of activation-tagged Arabidopsis, we identified a mutant named abz126 that displayed longer hypocotyls when grown in the dark on MS media containing brassinazole (Brz), an inhibitor of BRs biosynthesis. We have cloned the mutant locus using adapter ligation PCR walking and identified that a single T-DNA had been integrated into the ninth exon of the GIGANTEA (GI) gene, involved in controling flowering time. This insertion resulted in loss-of-function of the GI gene and caused the following phenotypes: long petioles, tall plant height, many rosette leaves and late flowering. RT-PCR assays on abz126 mutant showed that the T-DNA insertion in GIGANTEA led to the loss of mRNA expression of the GI gene. In the hormone dose response assay, abz126 mutant showed: 1) an insensitivity to paclobutrazole (PAC), 2) an altered response with 6-benzylaminopurine (BAP) and 3) insensitive to Brassinolide (BL). Based on these results, we propose that the late flowering and tall phenotypes displayed by the abz126 mutant are caused by a loss-of-function of the GI gene associated with brassinosteroid hormone signaling.