DOI QR코드

DOI QR Code

Loss of Function in GIGANTEA Gene is Involved in Brassinosteroid Signaling

  • Received : 2011.04.04
  • Accepted : 2011.06.20
  • Published : 2011.06.30

Abstract

Brassinosteroids (BRs) are plant steroid hormones that play essential roles in growth and development. Mutations in BR-signaling pathways cause defective in growth and development like dwarfism, male sterility, abnormal vascular development and photomorphogenesis. Transition from vegetative to reproductive growth is a critical phase change in the development of a flowering plant. In a screen of activation-tagged Arabidopsis, we identified a mutant named abz126 that displayed longer hypocotyls when grown in the dark on MS media containing brassinazole (Brz), an inhibitor of BRs biosynthesis. We have cloned the mutant locus using adapter ligation PCR walking and identified that a single T-DNA had been integrated into the ninth exon of the GIGANTEA (GI) gene, involved in controling flowering time. This insertion resulted in loss-of-function of the GI gene and caused the following phenotypes: long petioles, tall plant height, many rosette leaves and late flowering. RT-PCR assays on abz126 mutant showed that the T-DNA insertion in GIGANTEA led to the loss of mRNA expression of the GI gene. In the hormone dose response assay, abz126 mutant showed: 1) an insensitivity to paclobutrazole (PAC), 2) an altered response with 6-benzylaminopurine (BAP) and 3) insensitive to Brassinolide (BL). Based on these results, we propose that the late flowering and tall phenotypes displayed by the abz126 mutant are caused by a loss-of-function of the GI gene associated with brassinosteroid hormone signaling.

Keywords

References

  1. T. Altmann, "Molecular physiology of brassinosteroids revealed by the analysis of mutants", Planta., Vol. 208, No. 1, p. 1, 1999. https://doi.org/10.1007/s004250050528
  2. R. N. Arteca and J. M. Arteca, "Characterization of gravitropic inflorescence bending in brassinosteroid biosynthesis and signaling Arabidopsis mutants", J. Plant. Physiol, in print, 2011.
  3. T. Asami, M. Mizutani, S. Fujioka, H. Goda, Y. K. Min, Y. Shimada, T. Nakano, S. Takatsuto, T. Matsuyama, N. Nagata, K. Sakata, and S. Yoshida, "Selective interaction of triazole derivatives with DWF4, a cytochrome P450 monooxygenase of the brassinosteroid biosynthetic pathway, correlates with brassinosteroid deficiency in planta", J. Biol. Chem., Vol. 276, No. 28, p. 25687, 2001. https://doi.org/10.1074/jbc.M103524200
  4. G. J. Bishop and C. Koncz, "Brassinosteroids and plant steroid hormone signaling", Plant. Cell., 2002.
  5. S. Cao, M. Ye, and S. Jiang, "Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis", Plant. Cel.l Rep., Vol. 24, No. 11, p. 683, 2005. https://doi.org/10.1007/s00299-005-0061-x
  6. S. D. Clouse, M. Langford, and T. C. McMorris, "A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development", Plant. Physiol., Vol. 111, No. 3, p. 671, 1996. https://doi.org/10.1104/pp.111.3.671
  7. N. Dalchau, S. J. Baek, H. M. Briggs, F. C. Robertson, A. N. Dodd, M. J. Gardner, M. A. Stancombe, M. J. Haydon, G. B. Stan, J. M. Goncalves, and A. A. Webb, "The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose", Proc. Natl. Acad. Sci., Vol. 108, No. 12, p. 5104, 2011. https://doi.org/10.1073/pnas.1015452108
  8. B. De Rybel, D. Audenaert, G. Vert, W. Rozhon, J. Mayerhofer, F. Peelman, S. Coutuer, T. Denayer, L. Jansen, L. Nguyen, I. Vanhoutte, G. T. Beemster, K. Vleminckx, C. Jonak, J. Chory, D. Inze, E. Russinova, and T. Beeckman, "Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling", Chem. Biol., Vol. 16, No. 6, p. 594, 2009. https://doi.org/10.1016/j.chembiol.2009.04.008
  9. S. Fowler, K. Lee, H. Onouchi, A. Samach, K. Richardson, B. Morris, G. Coupland, and J. Putterill, "GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains", J. EMBO., Vol. 18, No. 17, p. 4679, 1999. https://doi.org/10.1093/emboj/18.17.4679
  10. S. Fowler and M. F. Thomashow, "Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway", Plant. Cell., Vol. 14, No. 3, p. 1675, 2002. https://doi.org/10.1105/tpc.003483
  11. D. M. Friedrichsen, C. A. Joazeiro, J. Li, T. Hunter, J. Chory, "Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase", Plant. Physiol., Vol. 123, No 4, p.1247, 2000. https://doi.org/10.1104/pp.123.4.1247
  12. Z. He, Z. Y. Wang, J. Li, Q. Zhu, C. Lamb, P. Ronald, and J. Chory, "Perception of brassinosteroids by the extracellular domain of the receptor kinase BRI1", Science, Vol. 288, No. 5475, p. 2360, 2000. https://doi.org/10.1126/science.288.5475.2360
  13. E. Huq, J. M. Tepperman, and P. H. Quail, "GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis", Proc. Natl. Acad. Sci., Vol. 97, No. 17, p. 9789, 2000. https://doi.org/10.1073/pnas.170283997
  14. R. Karlova and S. C. de Vries, "Advances in understanding brassinosteroid signaling", STKE. Sci., Vol. 2006, No. 354, p. 36, 2006.
  15. T. W. Kim and Z. Y. Wang, "Brassinosteroid signal transduction from receptor kinases to transcription factors", Annu. Rev. Plant. Biol., Vol. 61, p. 681, 2010. https://doi.org/10.1146/annurev.arplant.043008.092057
  16. J. Kurepa, J. Smalle, M. Van Montagu, and D. Inze, "Oxidative stress tolerance and longevity in Arabidopsis: the late-flowering mutant gigantea is tolerant to paraquat", J. Plant, Vol. 14, No. 6, p. 759, 1998. https://doi.org/10.1046/j.1365-313x.1998.00168.x
  17. J. Li and J. Chory, "A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction", Cell., Vol. 90, No. 5, 1997.
  18. J. Li and K. H. Nam, "Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase", Science, Vol. 295, No. 5558, p. 1299, 2002.
  19. S. Mora-Garcia, G. Vert, Y. Yin, A. Cano-Delgado, H. Cheong, and J. Chory, "Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis", Genes. Dev., Vol. 18, No. 4, p. 448, 2004. https://doi.org/10.1101/gad.1174204
  20. M. H. Oh, S. D. Clouse, and S. C. Huber, "Tyrosine phosphorylation in brassinosteroid signaling", Plant. Signal. Behav., Vol. 4, No. 12, p. 1182, 2009. https://doi.org/10.4161/psb.4.12.10046
  21. K. A. Oliverio, M. Crepy, E. L. Martin-Tryon, R. Milich, S. L. Harmer, J. Putterill, M. J. Yanovsky, J. J. Casal, "GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock", Plant. Physiol., Vol. 144, No. 1, p. 495, 2007. https://doi.org/10.1104/pp.107.097048
  22. D. H. Park, D. E. Somers, Y. S. Kim, Y. H. Choy, H. K. Lim, M. S. Soh, H. J. Kim, S. A. Kay, and H. G. Nam, "Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene", Science, Vol. 285, No. 5433, p. 1579, 1999. https://doi.org/10.1126/science.285.5433.1579
  23. H. Ryu, H. Cho, K. Kim, and I. Hwang, "Phosphorylation dependent nucleocytoplasmic shuttling of BES1 is a key regulatory event in brassinosteroid signaling", Mol. Cells., Vol. 29, No. 3, p. 283, 2010. https://doi.org/10.1007/s10059-010-0035-x
  24. K. Schumacher and J. Chory, "Brassinosteroid signal transduction: still casting the actors", Curr. Opin. Plant. Biol., Vol. 3, No. 1, p. 79, 2000. https://doi.org/10.1016/S1369-5266(99)00038-2
  25. K. Sekimata, T. Ohnishi, M. Mizutani, Y. Todoroki, S. Y. Han, J. Uzawa, S. Fujioka, K. Yoneyama, Y. Takeuchi, S. Takatsuto, K. Sakata, S. Yoshida, and T. Asami, "Brz220 interacts with DWF4, a cytochrome P450 monooxygenase in brassinosteroid biosynthesis, and exerts biological activity", Biosci. Biotechnol. Biochem., Vol. 72, No. 1, p. 7, 2008. https://doi.org/10.1271/bbb.70141
  26. N. Takahashi, M. Nakazawa, K. Shibata, T. Yokota, A. Ishikawa, K. Suzuki, M. Kawashima, T. Ichikawa, H. Shimada, and M. Matsui, "shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels", J. Plant, Vol. 42, No. 1, p. 13, 2005. https://doi.org/10.1111/j.1365-313X.2005.02357.x
  27. X. Wang, X. Li, J. Meisenhelder, T. Hunter, S. Yoshida, T. Asami, and J. Chory, "Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1", Dev. Cell., Vol. 8, No. 6, p. 855, 2005. https://doi.org/10.1016/j.devcel.2005.05.001
  28. Z. Y. Wang, T. Nakano, J. Gendron, J. He, M. Chen, D. Vafeados, Y. Yang, S. Fujioka, S. Yoshida, T. Asami, J. Chory, "Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis", Dev. Cell., Vol. 2, No. 4, p. 505, 2002. https://doi.org/10.1016/S1534-5807(02)00153-3
  29. Z. Y. Wang, H. Seto, S. Fujioka, S. Yoshida, and J. Chory, "BRI1 is a critical component of a plasmamembrane receptor for plant steroids", Nature, Vol. 410, No. 6826, p. 380, 2001. https://doi.org/10.1038/35066597
  30. D. Weigel, J. H. Ahn, M. A. Blazquez, J. O. Borevitz, S. K. Christensen, C. Fankhauser, C. Ferrandiz, I. Kardailsky, E. J. Malancharuvil, M. M. Neff, J. T. Nguyen, S. Sato, Z. Y. Wang, Y. Xia, R. A. Dixon, M. J. Harrison, C. J. Lamb, M. F. Yanofsky, and J. Chory, "Activation tagging in Arabidopsis", Plant. Physiol., Vol. 122, No. 4, p. 1003, 2000. https://doi.org/10.1104/pp.122.4.1003
  31. Y. Yin, Z. Y. Wang, S. Mora-Garcia, J. Li, S. Yoshida, T. Asami, and J. Chory, "BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation", Cell., Vol. 109, No. 2, p. 181, 2002. https://doi.org/10.1016/S0092-8674(02)00721-3