• 제목/요약/키워드: branching rules

검색결과 3건 처리시간 0.014초

SOME BRANCHING FORMULAS FOR KAC-MOODY LIE ALGEBRAS

  • Lee, Kyu-Hwan;Weyman, Jerzy
    • 대한수학회논문집
    • /
    • 제34권4호
    • /
    • pp.1079-1098
    • /
    • 2019
  • In this paper we give some branching rules for the fundamental representations of Kac-Moody Lie algebras associated to T-shaped graphs. These formulas are useful to describe generators of the generic rings for free resolutions of length three described in [7]. We also make some conjectures about the generic rings.

ON THE ISOSPECTRA AND THE ISOMETRIES OF THE ALOFF-WALLACH SPACES

  • Joe, Do-Sang;Lee, Yoon-Weon;Park, Jin-Sung;Ryu, Jeong-Seog
    • 대한수학회보
    • /
    • 제38권2호
    • /
    • pp.413-425
    • /
    • 2001
  • We use the branching rules on SU(3) to show that if two Aloff-Wallach spaces $M_{k,l}\;and\;M_{k',l'}$ are isospectral for the Laplacian acting on smooth functions, they are isometric. We also show that 1 is the non-zero smallest eigenvalue among all Aloff-Wallach spaces and compute the multiplicities.

  • PDF

On the Tensor Product of m-Partition Algebras

  • Kennedy, A. Joseph;Jaish, P.
    • Kyungpook Mathematical Journal
    • /
    • 제61권4호
    • /
    • pp.679-710
    • /
    • 2021
  • We study the tensor product algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm), where Pk(x) is the partition algebra defined by Jones and Martin. We discuss the centralizer of this algebra and corresponding Schur-Weyl dualities and also index the inequivalent irreducible representations of the algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm) and compute their dimensions in the semisimple case. In addition, we describe the Bratteli diagrams and branching rules. Along with that, we have also constructed the RS correspondence for the tensor product of m-partition algebras which gives the bijection between the set of tensor product of m-partition diagram of Pk(n1) ⊗ Pk(n2) ⊗ ⋯ ⊗ Pk(nm) and the pairs of m-vacillating tableaux of shape [λ] ∈ Γkm, Γkm = {[λ] = (λ1, λ2, …, λm)|λi ∈ Γk, i ∈ {1, 2, …, m}} where Γk = {λi ⊢ t|0 ≤ t ≤ k}. Also, we provide proof of the identity $(n_1n_2{\cdots}n_m)^k={\sum}_{[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ f[λ]mk[λ] where mk[λ] is the multiplicity of the irreducible representation of $S{_{n_1}}{\times}S{_{n_2}}{\times}....{\times}S{_{n_m}}$ module indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$, where f[λ] is the degree of the corresponding representation indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ and ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}=\{[{\lambda}]=({\lambda}_1,{\lambda}_2,{\ldots},{\lambda}_m){\mid}{\lambda}_i{\in}{\Lambda}^k_{n_i},i{\in}\{1,2,{\ldots},m\}\}$ where ${\Lambda}^k_{n_i}=\{{\mu}=({\mu}_1,{\mu}_2,{\ldots},{\mu}_t){\vdash}n_i{\mid}n_i-{\mu}_1{\leq}k\}$.