• Title/Summary/Keyword: branch school

Search Result 940, Processing Time 0.031 seconds

An ATM Network Management System for Point-to-Multipoint Reservation Service

  • Hong, Daniel Won-Kyu;Hong, Choong-Seon;Yun, Dong-Sik;Yoo, Jae-Hyoung;Kim, Woo-Sung
    • ETRI Journal
    • /
    • v.24 no.4
    • /
    • pp.299-310
    • /
    • 2002
  • This paper describes an integrated network management framework for providing point-to-multipoint reservation service (PMRS) in an ATM network. There are two major issues confronting the network service provider in relation to this service: one is to rapidly confirm the acceptability of the subscriber's reservation at subscription time, and the other is to punctually activate the reserved point-to-multipoint service. To meet these requirements, we developed a service provision model (SPM) and a network resource model of a bandwidth allocation timetable (BATT). We propose a point-to-multipoint routing algorithm composed of ordering and backtracking procedures, which can find the best branch point under the complex network topology and can add more destinations to the existing point-to-multipoint route. We demonstrate the feasibility of the SPM, the BATT, and the point-to-multipoint routing algorithm by implementing our schemes and analyzing their performance under the operational ATM network of KT(Korea Telecom).

  • PDF

Orthogonal projection of points in CAD/CAM applications: an overview

  • Ko, Kwanghee;Sakkalis, Takis
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.116-127
    • /
    • 2014
  • This paper aims to review methods for computing orthogonal projection of points onto curves and surfaces, which are given in implicit or parametric form or as point clouds. Special emphasis is place on orthogonal projection onto conics along with reviews on orthogonal projection of points onto curves and surfaces in implicit and parametric form. Except for conics, computation methods are classified into two groups based on the core approaches: iterative and subdivision based. An extension of orthogonal projection of points to orthogonal projection of curves onto surfaces is briefly explored. Next, the discussion continues toward orthogonal projection of points onto point clouds, which spawns a different branch of algorithms in the context of orthogonal projection. The paper concludes with comments on guidance for an appropriate choice of methods for various applications.

Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods

  • Motezaker, Mohsen;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.745-753
    • /
    • 2017
  • Dynamic analysis of a concrete pipes armed with Silica ($SiO_2$) nanoparticles subjected to earthquake load is presented. The structure is modeled with first order shear deformation theory (FSDT) of cylindrical shells. Mori-Tanaka approach is applied for obtaining the equivalent material properties of the structure considering agglomeration effects. Based on energy method and Hamilton's principle, the motion equations are derived. Utilizing the harmonic differential quadrature method (HDQM) and Newmark method, the dynamic displacement of the structure is calculated for the Kobe earthquake. The effects of different parameters such as geometrical parameters of pipe, boundary conditions, $SiO_2$ volume percent and agglomeration are shown on the dynamic response of the structure. The results indicate that reinforcing the concrete pipes by $SiO_2$ nanoparticles leads to a reduction in the displacement of the structure during an earthquake.

Mode shape identification using response spectrum in experimental modal analysis

  • Babakhani, Behrouz;Rahami, Hossein;Mohammadi, Reza Karami
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.345-361
    • /
    • 2018
  • The set of processes performed to determine the dynamic characteristics of the constructed structures is named experimental modal analysis. Using experimental modal analysis and interpreting its results, structural failure can be assessed and then it would be possible to plan for their repair and maintenance. The purpose of the experimental modal analysis is to determine the resonance frequencies, mode shapes and Mode damping for the structure. Diverse methods for determining the shape of the mode by various researchers have been presented. There are pros and cons for each of these methods. This paper presents a method for determining the mode shape of the structures using the response spectrum in the experimental modal analysis. In the first part, the principles of the proposed method are described. Then, to check the accuracy of the results obtained from the proposed method, single and multiple degrees of freedom models were numerically and experimentally investigated.

Characterization of Linear Polymer-Dendrimer Block Copolymer/Plasmid DNA Complexes: Formation of Core-shell Type Nanoparticles with DNA and Application to Gene Delivery in Vitro

  • Choi, Joon-Sig;Choi, Young-Hun;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.1025-1030
    • /
    • 2004
  • A hybrid linear polymer-dendrimer block copolymer, poly(ethylene glycol)-block-poly(L-lysine) dendrimer, was synthesized and introduced to form polyionic complexes with DNA. The copolymer formed core-shell type nanoparticles with plasmid DNA. From dynamic light scattering experiments, the mean diameter of the polyplexes was observed to be 154.4 nm. The complex showed much increased water solubility compared to poly(L-lysine). The plasmid DNA in polyplexes was efficiently protected from the enzymatic digestion of DNase I. The cytotoxicity and transfection efficiency for 293 cells was measured in comparison with poly(Llysine).

Application of Random Forests to Association Studies Using Mitochondrial Single Nucleotide Polymorphisms

  • Kim, Yoon-Hee;Kim, Ho
    • Genomics & Informatics
    • /
    • v.5 no.4
    • /
    • pp.168-173
    • /
    • 2007
  • In previous nuclear genomic association studies, Random Forests (RF), one of several up-to-date machine learning methods, has been used successfully to generate evidence of association of genetic polymorphisms with diseases or other phenotypes. Compared with traditional statistical analytic methods, such as chi-square tests or logistic regression models, the RF method has advantages in handling large numbers of predictor variables and examining gene-gene interactions without a specific model. Here, we applied the RF method to find the association between mitochondrial single nucleotide polymorphisms (mtSNPs) and diabetes risk. The results from a chi-square test validated the usage of RF for association studies using mtDNA. Indexes of important variables such as the Gini index and mean decrease in accuracy index performed well compared with chi-square tests in favor of finding mtSNPs associated with a real disease example, type 2 diabetes.

Stability Analysis of Linear Uncertain Differential Equations

  • Chen, Xiaowei;Gao, Jinwu
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.1
    • /
    • pp.2-8
    • /
    • 2013
  • Uncertainty theory is a branch of mathematics based on normolity, duality, subadditivity and product axioms. Uncertain process is a sequence of uncertain variables indexed by time. Canonical Liu process is an uncertain process with stationary and independent increments. And the increments follow normal uncertainty distributions. Uncertain differential equation is a type of differential equation driven by the canonical Liu process. Stability analysis on uncertain differential equation is to investigate the qualitative properties, which is significant both in theory and application for uncertain differential equations. This paper aims to study stability properties of linear uncertain differential equations. First, the stability concepts are introduced. And then, several sufficient and necessary conditions of stability for linear uncertain differential equations are proposed. Besides, some examples are discussed.

Protection Effects Associated with Installation Conditions of SPD (SPD의 설치조건이 보호효과에 미치는 영향)

  • Lee, Bok-Hee;Lee, Dong-Moon;Jeong, Dong-Cheol;Lee, Seung-Chil
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.298-302
    • /
    • 2005
  • This paper presents the protection effect of SPDs according to installation conditions. To develop the effective protection countermeasures of information and communication equipments against lightning surges, actual-sized experiments in relation to the protection effects on the installation positions of surge protective devices(SPDs), the length of branch circuit the materials and long of conduit were conducted. The best method for protecting the electronic equipments from surges is to install the SPD at the front point of the devices to be protected. The installation method of the metal conduit bonded with common ground conductor were more effective than that of the PVC conduit.

  • PDF

A Loss Minimization Control Strategy for Direct Torque Controlled Interior Permanent Magnet Synchronous Motors

  • Siahbalaee, Jafar;Vaez-Zadeh, Sadegh;Tahami, Farzad
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.940-948
    • /
    • 2009
  • The main objective of this a paper is to improve the efficiency of permanent magnet synchronous motors (PMSMs) by using an improved direct torque control (DTC) strategy. The basic idea behind the proposed strategy is to predict the impact of a small change in the stator flux amplitude at each sampling period to decrease electrical loss before the change is applied. Accordingly, at every sampling time, a voltage vector is predicted and applied to the machine to fulfill the flux change. The motor drive simulations confirm a significant improvement in efficiency as well as a very fast and smooth response under the proposed strategy.

Applications of Stochastic Process in the Quadrupole Ion traps

  • Chaharborj, Sarkhosh Seddighi;Kiai, Seyyed Mahmod Sadat;Arifina, Norihan Md;Gheisari, Yousof
    • Mass Spectrometry Letters
    • /
    • v.6 no.4
    • /
    • pp.91-98
    • /
    • 2015
  • The Brownian motion or Wiener process, as the physical model of the stochastic procedure, is observed as an indexed collection random variables. Stochastic procedure are quite influential on the confinement potential fluctuation in the quadrupole ion trap (QIT). Such effect is investigated for a high fractional mass resolution Δm/m spectrometry. A stochastic procedure like the Wiener or Brownian processes are potentially used in quadrupole ion traps (QIT). Issue examined are the stability diagrams for noise coefficient, η=0.07;0.14;0.28 as well as ion trajectories in real time for noise coefficient, η=0.14. The simulated results have been obtained with a high precision for the resolution of trapped ions. Furthermore, in the lower mass range, the impulse voltage including the stochastic potential can be considered quite suitable for the quadrupole ion trap with a higher mass resolution.