• Title/Summary/Keyword: brake cylinder

Search Result 108, Processing Time 0.028 seconds

Development of intelligent model to predict the characteristics of biodiesel operated CI engine with hydrogen injection

  • Karrthik, R.S.;Baskaran, S.;Raghunath, M.
    • Advances in Computational Design
    • /
    • v.4 no.4
    • /
    • pp.367-379
    • /
    • 2019
  • Multiple Inputs and Multiple Outputs (MIMO) Fuzzy logic model is developed to predict the engine performance and emission characteristics of pongamia pinnata biodiesel with hydrogen injection. Engine performance and emission characteristics such as brake thermal efficiency (BTE), brake specific energy consumption (BSEC), hydrocarbon (HC), carbon monoxide (CO), carbon dioxide ($CO_2$) and nitrous oxides ($NO_X$) were considered. Experimental investigations were carried out by using four stroke single cylinder constant speed compression ignition engine with the rated power of 5.2 kW at variable load conditions. The performance and emission characteristics are measured using an Exhaust gas analyzer, smoke meter, piezoelectric pressure transducer and crank angle encoder for different fuel blends (Diesel, B10, B20 and B30) and engine load conditions. Fuzzy logic model uses triangular and trapezoidal membership function because of its higher predictive accuracy to predict the engine performance and emission characteristics. Computational results clearly demonstrate that, the proposed fuzzy model has produced fewer deviations and has exhibited higher predictive accuracy with acceptable determination correlation coefficients of 0.99136 to 1 with experimental values. The developed fuzzy logic model has produced good correlation between the fuzzy predicted and experimental values. So it is found to be useful for predicting the engine performance and emission characteristics with limited number of available data.

Structural Analysis of Power Transmission Mechanism of Electro-Mechanical Brake Device for High Speed Train (고속열차용 전기기계식 제동장치의 동력전달 기구물에 대한 구조해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.237-246
    • /
    • 2019
  • The Electro-Mechanical Brake (EMB) is the next generation braking system for automobiles and railway vehicles. Current brake systems for high-speed trains generate a braking force using a pneumatic cylinder, but EMB systems produce that force through a combination of an electric motor and a gear. In this study, an EMB operation mechanism capable of generating a high braking force was proposed, and structural and vibration analyses of the gears and shafts, which are the core parts of the mechanisms, were performed. Dynamic structural analysis confirmed that the maximum stress in the analysis model was within the yield strength of the material. In addition, the design that maximizes the diameter of the motor shaft was found to be advantageous in strength, and large shear stress could be generated in the bolt fixing the gear and eccentric shaft. In addition, a test apparatus that can reproduce the mechanism of the analytical model was fabricated to measure the strain of the fixed bolt part, which is the most vulnerable part. The strain measurement results showed that the error between the analysis and measurement was within 10%, which could verify the accuracy of the analytical model.

Performance characteristics of a single-cylinder power tiller engine with biodiesel produced from mixed waste cooking oil

  • Choi, Hwon;Woo, Duk Gam;Kim, Tae Han
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • Biodiesel is a clean energy resource that can replace diesel as fuel, which can be used without any structural changes to the engine. Vegetable oil accounts for 95 percent of the raw materials used to produce biodiesel. Thus, many problems can arise, such as rising prices of food resources and an imbalance between supply and demand. Most of the previous studies using waste cooking oil used waste cooking oil from a single material. However, the waste cooking oil that is actually collected is a mixture of various types of waste cooking oil. Therefore, in this study, biodiesel produced with mixed waste cooking oil was supplied to an agricultural single-cylinder diesel engine to assess its potential as an alternative fuel. Based on the results, the brake specific fuel consumption (BSFC) increased compared to diesel, and the axis power decreased to between 70 and 99% compared to the diesel. For emissions, NOx and CO2 were increased, but CO and HC were decreased by up to 1 to 7% and 16 to 48%, respectively, compared to diesel. The emission characteristics of the mixed waste cooking oil biodiesel used in this study were shown to be similar to those of conventional vegetable biodiesel, confirming its potential as a fuel for mixed waste cooking oil biodiesel.

Study on Combustion Characteristics of Single-Cylinder Diesel Engine by Double Injection (이중 분사 적용에 따른 단기통 디젤엔진의 연소특성에 관한 연구)

  • Lee, Jong-Tae;Shin, Dalho;Kim, Hyung Jun;Yun, Chang-Wan;Kim, Jeong-Soo;Park, Suhan
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • This paper presents an experimental study on the effect of double injection strategies on combustion characteristics in a single-cylinder diesel engine. These studies are applied to the double injection strategies, such as $2^{nd}$ injection timing variations with fixed injection interval (8 degree) and variations of injection pressures with fixed injection timing and intervals. The injection quantity was 7 + 7 mg for double injections, and 14 mg for single injection. When the injection pressure was increased, the ignition delay was shortened, and the ISFC (indicated specific fuel consumption) was increased due to the fast termination of combustion by the shortened energizing duration. In addition, the retardation of injection timings toward TDC (top dead center) caused the reduction of ignition delay and the decrease of ISFC with the decrease of FMEP (friction mean effective pressure).

Fatigue Analysis for Electro-Mechanical Brake Caliper based on Eccentric Rotating Shaft (편심회전축 기반의 전기기계식 제동장치의 피로수명 해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.596-603
    • /
    • 2020
  • 'Electro-Mechanical Brake (EMB) is a novel braking system for automobiles and railway vehicles, and research in this area is actively underway. The current braking system for railway vehicles generates a braking force using a pneumatic cylinder, but the EMB system generates the force through a combination of an electric motor and gears. In this study, the design of an EMB system that meets the domestic standards was conducted through the finite element modeling and fatigue analysis of an eccentric rotating shaft-based EMB system capable of generating a high clamping force. At this time, to improve the accuracy of fatigue analysis, three types of fatigue test specimens, which were subjected to the same heat treatment as the materials used in the prototype, were produced, and the fatigue tests were performed for each material. The fatigue properties (S-N curves) were obtained from the fatigue test results for each material and reflected in the analysis model. The results of fatigue analysis confirmed that the design of the EMB prototype could satisfy the maximum commercial braking/relaxation of 530,000 times, which was the endurance life condition for domestic railway vehicles. In addition, based on this design, a prototype will be manufactured, and endurance testing will be completed to demonstrate the durability characteristics of the developed prototype.

Comparisons of Empirical Braking Models for Freight Trains Using P4a Distribution Valve (P4a 분배밸브를 사용하는 화물열차의 경험적 제동모델들의 비교)

  • Choi, Don Bum;Kim, Min-Soo;Lee, Kangmi;Kim, Young-Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • This study examined the braking characteristics of a heavy haul freight train with P4a distribution valves applied to domestic high-speed freight trains. A freight train was composed of 50 cars, which is twice the normal operation. A braking test was performed to confirm the characteristics of the braking of a heavy haul. The brake cylinder pressures were measured for emergency and service braking on the 1st, 10th, 20th, 30th, and 50th cars. Because the brake signal is transmitted to the pressure through the braking tube connected to the end of the train, the rear vehicle is braking later than the vehicle ahead. Therefore, it is necessary to predict the brake pressures in all cars in a train to supplement the results of the limited tests and calculate the braking distance. The pressure in each car was determined using empirical models of linear interpolation, stepwise, and exponential models, which provided reliable information. The predictive results of the empirical models were compared with the measured results, and the exponential model was predicted relatively accurately. These results are expected to contribute to the safe operation of heavy haul freight trains and can be used to predict the braking distance and calculate the level of impact between vehicles during braking.

The Effect of Fuel Injection Timing on the Combustion and Emission Characteristics of a Natural Gas Fueled Engine at Part Loads

  • Cho, Haeng-Muk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1013-1018
    • /
    • 2008
  • For a sequential port fuel injection natural gas engine, its combustion and emission characteristics at low loads are crucial to meet light duty vehicle emission regulations. Fuel injection timing is an important parameter related to the mixture formation in the cylinder. Its effect on the combustion and emission characteristics of a natural gas engine were investigated at 0.2 MPa brake mean effective pressure (BMEP)/2000 rpm and 0.26 MPa BMEP/1500 rpm. The results show that early fuel injection timing is beneficial to the reduction of the coefficient of variation (COV) of indicated mean effective pressure (IMEP) under lean burn conditions and to extending the lean burn limits at the given loads. When relative air/fuel ratio is over 1.3, fuel injection timing has a relatively large effect on engine.out emissions. The levels of NOx emissions are more sensitive to the fuel injection timing at 0.26 MPa BMEP/1500 rpm. An early fuel injection timing under lean burn conditions can be used to control engine out NOx emissions.

A Study on the Impronement on the Response of Solenoid-Flow control type ABS Modulator (솔레이노-유량제어 방식 ABS의 응답성 향상에 관한 연구)

  • 송창섭;김형태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.569-572
    • /
    • 1995
  • In this study, a hydraulic modulator of solenoid-flow type ABS, the master sylinder, and the wheel cylinder are modeled and simulated for increasing pressure characteristics of the brake. Response can be predicted by external force of the the master sylinder and pulses to the solenoid valve as input. For a demonstration of simulation result, experiment is done under the same condition as simulation condition after experimental apparatus of 1/4 car model is constructed. When factors of flow control valve are changed, the effect of each factor to response, how to improve response, and the most critical factors are considered from simulated result of time constant.

  • PDF

An Experimental Study of the Effects of Water Vapor in Intake Air on Comvustion and knock Characteristics in a Spark Ignition Engine (흡기중 수증기 함량이 스파크 점화기관의 연소 및 노킹에 미치는 영향에 관한 실험적 연구)

  • 이택헌;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.205-212
    • /
    • 1998
  • In this study, the effects of water vapor in inlet air on combustion efficiency, general performance, knock characteristics and emission gas concentration were investig- ated through the experiments of combustion and vibration analyses, emission gas analysis by changing water vapor quantity in inlet air with temperature and humidity auto control unit. With partial vapor pressure increase, the brake torque at wide open throttle status decreased and the average ignition delay angle increased, IMEP (indicated mean effective pressured using the integral and 3rd derivatives of filtered cylinder pressure as knock intensity, which matched well with the method of frequency power spectrum of block vibration signal. Water vapor in intake air had influence on the spark knock sensitivity. With the increase of water vapor content in intake air NOx emission was decreased and HC emission was increased.

  • PDF

Performance and Emissions Characteristics of Small Engine at WOT Condition (전부하 상태에서 소형 엔진의 성능 및 배기특성)

  • Park, S.K.;Kim, B.G.;Oh, J.W.;Choi, Y.H.;Kim, D.S.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.85-90
    • /
    • 2008
  • This paper presents the performance and emissions characteristics of a small spark-ignited gasoline engine. The engine used in this paper is a single cylinder, diaphragm carburetor, two-stroke, air-cooled 26cc SI engine for brush cutter. For the performance of the engine, RPM, torque, and fuel consumption were measured and HC, CO, and NOx measured for the emissions according to the change of the dynamometer load at wide open throttle (WOT) position. The results showed that the excess air ratio decreased and torque increased with increasing loads, the torque and brake specific fuel consumption were the optimum driving condition at the 7000 rpm, HC and CO emissions increased with increasing loads and with an decrease in excess air ratio over 7000 rpm.

  • PDF