• Title/Summary/Keyword: brainwaves

Search Result 40, Processing Time 0.023 seconds

Normalization Framework of BCI-based Facial Interface

  • Sung, Yunsick;Gong, Suhyun
    • Journal of Multimedia Information System
    • /
    • v.2 no.3
    • /
    • pp.275-280
    • /
    • 2015
  • Recently brainwaves are utilized diversely in the field of medicine, entertainment, education and so on. In the case of medicine, brainwaves are analyzed to estimate patients' diseases. However, the applications for entertainments usually utilize brainwaves as control signal without figuring out the characters of the brainwaves. Given that users' brainwaves are different each other, a normalization method is essential. The traditional brainwave normalization approaches utilize normal distribution. However, those approaches assume that brainwaves are collected enough to conduct normal distribution. When the few amounts of brainwaves are measured, the accuracy of the control signal based on the measured brainwaves becomes low. In this paper, we propose a normalization framework of BCI-based facial interfaces for novel volume controllers, which can normalizes the few amounts of brainwaves and then generates the control signals of BCI-based facial interfaces. In the experiments, two subjects were involved to validate the proposed framework and then the normalization processes were introduced.

Effects of Low Visual Acuity Simulations on Eye-Hand Coordination and Brainwaves in Healthy Adults

  • Woo, Hee-Soon;Song, Chiang-Soon
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.296-303
    • /
    • 2022
  • Objective: In general, macular degeneration, cataracts and glaucoma generally cause visual injury in clinical settings. This study aimed to examine the effects of low visual acuity simulations on hand manual dexterity function and brainwaves in healthy young adults. Design: Cross-sectional study design Methods: This study was an observational, cross-sectional study. Seventy healthy young adults participated in this study. To evaluate the effects of low visual acuity simulations on hand function and brain waves, this study involved four different visual conditions including (1) normal vision, (2) simulated cataracts, (3) simulated glaucoma, and (4) simulated macular degeneration. The hand function was measured to use the Minnesota manual dexterity test (MMDT), and the brainwaves was also measured to use the electroencephalography. Results: In hand function, placing and turning performance on the MMDT in the normal visual condition was significantly different than that in the cataract and macular degeneration conditions (p<0.05), and the placing performance was significantly differred in the normal condition than that in the simulated glaucoma. However, turning was not significantly different in the normal condition than that in the simulated glaucoma. The alpha, beta, and gamma waves did not significantly differ among the four visual conditions (p>0.05). Conclusions: The results suggest that limited visual information negatively affects the ability to perform tasks requiring arm-hand dexterity and eye-hand coordination. However, the effectiveness of low visual acuity on the brainwaves should be further studied for rehabilitative evidence of visual impairment.

The Impact of Singing Bowl Healing on the Autonomic Nervous System and Brainwaves (싱잉볼 힐링이 자율신경계 반응과 뇌파에 미치는 영향)

  • Youn-Kyung Jun;Geo-Lyong Lee
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.125-132
    • /
    • 2023
  • This study investigated the effects of continuous Singing Bowl healing on brainwaves and autonomic nervous system responses. The variations in brainwaves were measured during 45-minute sessions in eight participants, before and after Singing Bowl healing sessions to assess the changes in brainwaves before and after five weeks of Singing Bowl healing treatment. BioBrain BIOS-S8 was used to obtain brainwave measurements. Electrodes were placed on six channels: F3, F4, T3, T4, P3, and P4. A standard limb lead I with electrodes was used for electrocardiogram (ECG) measurements. Using the collected brainwave data, changes in brain waves were observed before and after five weeks of Singing Bowl healing. Beta waves, alpha waves, and sensorimotor rhythm were found to have reduced, while theta waves, delta waves, and the standard deviation of normal-to-normal intervals in heart rate variability had increased. These results indicate that continuous Singing Bowl healing over five weeks can stabilize brainwaves, activate the autonomic nervous system, and increase the relaxation-inducing effects of the parasympathetic nervous system.

  • PDF

EEG Asymmetry Changes by the Left and the Right SMR Brainwave of the Computer Learning Versus the Paper and Pencil Learning

  • Kwon, Hyung-Kyu;Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1073-1079
    • /
    • 2007
  • The purpose of this study is to present the relationship between the computer learning and the paper and pencil learning through the math learning (simple computation and complex computation) and the cartoon learning and text learning. The canonical correlation and pairwise t-test of the SMR asymmetry brainwaves of the left and the right brain show the brainwaves with the respect to the manner in which they process information during the specified task by identifying the relative activity of the brainwaves of the left and the right brain. SMR brainwave which known as the scientific measure tool for the activity and the function of the neuronal cell were found to predict the level of the awakening to check the readiness of study preparation. Computer education as a medium of the individualized and the repetitive education shows the difference from the paper and the pencil test in the respect of the differences and the relationship of the SMR brainwave of the learning process.

  • PDF

Performance Evaluation of Transmitting Brainwave Signals for Driver's Safety in Urban Area Vehicular Ad-Hoc Network (운전자의 안전을 위한 도심지역 자동차 애드혹 통신망의 뇌파전송 성능평가)

  • Jo, Jun-Mo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.26-32
    • /
    • 2011
  • Recently, in the U-health area, there are research related on monitoring brainwaves in real-time for coping with emergent situations like the fatigue driving, cerebral infarction or the heart attack of not only the patients but also the normal elderly folks by transmitting of the EEG(Electroencephalograph). This system could be applied to hospitals or sanatoriums. In this paper, it is applied for the vehicular ad-hoc network to prevent the car accident in advance by monitoring the brainwaves of a driver in real-time. In order to do this, I used mobile ad-hoc nodes supported in the Opnet simulator for the efficient EEG brainwave transmission in the VANET environment. The vehicular ad-hoc networks transmitting the brainwaves to the nearest road-side unit are designed and simulated to draw an efficient and proper vehicular ad-hoc network environment.

Brainwave-based Mood Classification Using Regularized Common Spatial Pattern Filter

  • Shin, Saim;Jang, Sei-Jin;Lee, Donghyun;Park, Unsang;Kim, Ji-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.807-824
    • /
    • 2016
  • In this paper, a method of mood classification based on user brainwaves is proposed for real-time application in commercial services. Unlike conventional mood analyzing systems, the proposed method focuses on classifying real-time user moods by analyzing the user's brainwaves. Applying brainwave-related research in commercial services requires two elements - robust performance and comfortable fit of. This paper proposes a filter based on Regularized Common Spatial Patterns (RCSP) and presents its use in the implementation of mood classification for a music service via a wireless consumer electroencephalography (EEG) device that has only 14 pins. Despite the use of fewer pins, the proposed system demonstrates approximately 10% point higher accuracy in mood classification, using the same dataset, compared to one of the best EEG-based mood-classification systems using a skullcap with 32 pins (EU FP7 PetaMedia project). This paper confirms the commercial viability of brainwave-based mood-classification technology. To analyze the improvements of the system, the changes of feature variations after applying RCSP filters and performance variations between users are also investigated. Furthermore, as a prototype service, this paper introduces a mood-based music list management system called MyMusicShuffler based on the proposed mood-classification method.

Research on the Difference of Anti-Stress by Classification of Puberty Development Index (사춘기 발달지표 분류에 의한 항 스트레스 차이 연구)

  • Choi, Nam-Sook;Ahn, Sang-Kyun;Park, Pyong-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2505-2510
    • /
    • 2015
  • This study was to examine the difference of Anti-Stress Quotient of pre-puberty, puberty, and post-puberty time. pre-pubescent students 28 and pubescent students, 35 classified by questionnaires from elementary and middle school students located in the Y city were participated in this research. post-pubescent students 33 were sampled from college students' data collected by Braintech Corp. And analyzed by brainwaves, which could be obtained through QEEG BQ(Brain Quotient) Analysis. The result of this study is as follow: post-puberty time was increased Anti-Stress Quotient due to the decrease of the Body Stress and the Mental Stress. It means that the psychological characteristics of puberty time can be proven by not only method of questionnaires but also scientific brainwaves.

The Brainwave Analysis of Server System Based on Spring Framework (스프링 프레임워크 기반의 뇌파 분석 서버 시스템)

  • Choi, Sung-Ja;Kim, Gui-Jung;Kang, Byeong-Gwon
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.155-161
    • /
    • 2019
  • Electroencephalography (EEG), a representative method of identifying temporal and spatial changes in brain activity, is a voluntary electrical activity measurable in the human scalp. Various interface technologies have been provided to control EEG activity, and it is possible to operate a machine such as a wheelchair or a robot through brainwaves. The characteristics of EEG data are collected in various types of channels in real time, and a server system for analyzing them is required to have an independent and lightweight system for the platform. In these days, the Spring platform is used as a large business server as an independent, lightweight server system. In this paper, we propose an EEG analysis system using the Spring server system. Using the proposed system, the reliability of EEG control can be enhanced, and analysis and control interface expansion can be provided in various aspects such as game and medical areas.

Development of Brain-machine Interface for MindPong using Internet of Things (마인드 퐁 제어를 위한 사물인터넷을 이용하는 뇌-기계 인터페이스 개발)

  • Hoon-Hee Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.17-22
    • /
    • 2023
  • Brain-Machine Interfaces(BMI) are interfaces that control machines by decoding brainwaves, which are electrical signals generated from neural activities. Although BMIs can be applied in various fields, their widespread usage is hindered by the low portability of the hardware required for brainwave measurement and decoding. To address this issue, previous research proposed a brain-machine interface system based on the Internet of Things (IoT) using cloud computing. In this study, we developed and tested an application that uses brainwaves to control the Pong game, demonstrating the real-time usability of the system. The results showed that users of the proposed BMI achieved scores comparable to optimal control artificial intelligence in real-time Pong game matches. Thus, this research suggests that IoT-based brain-machine interfaces can be utilized in a variety of real-time applications in everyday life.

Research on EEG Parameters for Movement Prediction Based on Individual Difference of Athletic Ability and Lateral Asymmetry of Hemisphere (운동능력과 뇌편측성의 개인차에 따른 사지움직임예측을 위한 EEG 변수추출에 관한 연구)

  • Whang, Min-Cheol;Lim, Joa-Sang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.1-12
    • /
    • 2002
  • Recently, EEG gains much interests due to its applicability for people to communicate directly with computers without detouring motor output. This study was designed to address this issue if EEG can be successfully used to predict limb movement. It was found that ordinary people appeared to show significant difference in brainwaves between right hand (foot) and left hand (foot) movement. Lateral asymmetry was also found to interact significantly with EEG. Further research is urged with refined method to provide more useful insights into EEG-based BCI.