• Title/Summary/Keyword: brain cell culture

Search Result 134, Processing Time 0.024 seconds

Engineering Brain Organoids: Toward Mature Neural Circuitry with an Intact Cytoarchitecture

  • Hyunsoo Jang;Seo Hyun Kim;Youmin Koh;Ki-Jun Yoon
    • International Journal of Stem Cells
    • /
    • v.15 no.1
    • /
    • pp.41-59
    • /
    • 2022
  • The emergence of brain organoids as a model system has been a tremendously exciting development in the field of neuroscience. Brain organoids are a gateway to exploring the intricacies of human-specific neurogenesis that have so far eluded the neuroscience community. Regardless, current culture methods have a long way to go in terms of accuracy and reproducibility. To perfectly mimic the human brain, we need to recapitulate the complex in vivo context of the human fetal brain and achieve mature neural circuitry with an intact cytoarchitecture. In this review, we explore the major challenges facing the current brain organoid systems, potential technical breakthroughs to advance brain organoid techniques up to levels similar to an in vivo human developing brain, and the future prospects of this technology.

Guidelines for Manufacturing and Application of Organoids: Brain

  • Taehwan Kwak;Si-Hyung Park;Siyoung Lee;Yujeong Shin;Ki-Jun Yoon;Seung-Woo Cho;Jong-Chan Park;Seung-Ho Yang;Heeyeong Cho;Heh-In Im;Sun-Ju Ahn;Woong Sun;Ji Hun Yang
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.158-181
    • /
    • 2024
  • This study offers a comprehensive overview of brain organoids for researchers. It combines expert opinions with technical summaries on organoid definitions, characteristics, culture methods, and quality control. This approach aims to enhance the utilization of brain organoids in research. Brain organoids, as three-dimensional human cell models mimicking the nervous system, hold immense promise for studying the human brain. They offer advantages over traditional methods, replicating anatomical structures, physiological features, and complex neuronal networks. Additionally, brain organoids can model nervous system development and interactions between cell types and the microenvironment. By providing a foundation for utilizing the most human-relevant tissue models, this work empowers researchers to overcome limitations of two-dimensional cultures and conduct advanced disease modeling research.

Studies on the Effect of Several Crude Drugs on Cultured Chicken Brain Cells (수종 생약이 일차배양한 계배의 뇌세포에 미치는 영향)

  • Park, Mi-Jung;Song, Jin-Ho;Kim, Young-Choong
    • Korean Journal of Pharmacognosy
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 1989
  • Effects of Lycium chinensis, Epimedium koreanum and tuguaconitine which is isolated from Aconitum sibiricum on primary culture chicken embryonic brain cells were studied by microscopic observation and determined of the activity of pyruvate dehydrogenase complex(PDHC). Brain cells were prepared from the brain of 10-day-old chicken embryo and cultured with a medicine consisted of 90% Dulbecco's Modified Eagle Medium(DMEM) and 10% horse serum. It was observed that all substances studied seemed to show the tendency to stimulate the neurite outgrowth of brain cells which were cultured with a deficient medium under microscopic observation. The activity of PDHC in brain cells cultured with a deficient medium was increased by Lysium chinensis and Epimedium koreanum. However, tuguaconitine had not influence on the activity of PDHC.

  • PDF

Attenuation of Brain Injury by Water Extract of Goat's-beard (Aruncus dioicus) and Its Ethyl Acetate Fraction in a Rat Model of Ischemia-Reperfusion

  • Han, Hyung-Soo;Lee, Jong-Won
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.3
    • /
    • pp.217-223
    • /
    • 2011
  • Ischemic stroke constitutes about 80% of all stroke incidences. It is characterized by brain cell death in a region where cerebral arteries supplying blood are occluded. Under these ischemic conditions, apoptosis is responsible for the cell death, at least in part. Goat's-beard (Aruncus dioicus var. kamtschaticus) is a perennial plant that grows naturally in the alpine regions of Korea. In the present study, we first determined whether water extract of goat's-beard (HY1646) and some of its fractions prepared by partitioning with organic solvents could improve the viability of human hepatocellular carcinoma cells (HepG2) cultured under hypoxic condition by blocking apoptotic pathways. Based on the in vitro findings, we subsequently investigated whether HY1646 and the ethyl acetate fraction (EA) selected from cell culture-based screening could attenuate brain injury in a rat middle cerebral artery occlusion (MCAO) model of ischemia (2 hr), followed by 22 hours of reperfusion. The cell number was sustained close to that initially plated in the presence of HY1646 even after 24 hr of cell culture under hypoxic condition (3% $O_2$), at which time the cell number reached almost zero in the absence of HY1646. This improvement in cell viability was attributed to the delay in apoptosis, identified by the formation of DNA ladder in gel electrophoresis. Of fractions soluble in hexane, ethyl acetate (EA) and butanol, EA was chosen for the animal experiments because EA demonstrated the best cell viability at the lowest concentration (10 ${\mu}g$/mL). HY1646 (200 mg/kg) and EA (10 and 20 mg/kg) significantly reduced infarct size, an index of brain injury, by 16.6, 40.0 and 61.0%, respectively, as assessed by 2,3,5-triphenyl tetrazolium chloride staining. The findings suggest that prophylactic intake of goat's beard might be beneficial for preventing ischemic stroke.

Generation of Cortical Brain Organoid with Vascularization by Assembling with Vascular Spheroid

  • Myung Geun Kook;Seung-Eun Lee;Nari Shin;Dasom Kong;Da-Hyun Kim;Min-Soo Kim;Hyun Kyoung Kang;Soon Won Choi;Kyung-Sun Kang
    • International Journal of Stem Cells
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 2022
  • Background and Objectives: Brain organoids have the potential to improve our understanding of brain development and neurological disease. Despite the importance of brain organoids, the effect of vascularization on brain organoids is largely unknown. The objective of this study is to develop vascularized organoids by assembling vascular spheroids with cerebral organoids. Methods and Results: In this study, vascularized spheroids were generated from non-adherent microwell culture system of human umbilical vein endothelial cells, human dermal fibroblasts and human umbilical cord blood derived mesenchymal stem cells. These vascular spheroids were used for fusion with iPSCs induced cerebral organoids. Immunostaining studies of vascularized organoids demonstrated well organized vascular structures and reduced apoptosis. We showed that the vascularization in cerebral organoids up-regulated the Wnt/β-catenin signaling. Conclusions: We developed vascularized cerebral organoids through assembly of brain organoids with vascular spheroids. This method could not only provide a model to study human cortical development but also represent an opportunity to explore neurological disease.

Effect of Chungpaesagan-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture (청폐사간탕(淸肺瀉肝湯)이 뇌해마 조직배양의 신경세포 자연사에 미치는 영향)

  • Lee, Min-Young;Ku, Ja-Seung;Kim, Sung-Hoon;Kim, Yoon-Bum;Kim, Sun-Yeou;Choi, Hyeon;Sohn, Young-Joo;Jung, Hyuk-Sang;Sohn, Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.771-777
    • /
    • 2008
  • Chungpaesagan-tang which is used for treating patients of brain in cerebrovascular disease frequently from clinical doctor has not reported about the effect of neuronal aptosis caused of brain ischemia. The aim of this study is to investigate effect of Chungpaesagan-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation. And added Chungpaesagan-tang extract to cultures. thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Chungpaesagan-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Chungpaesagan-tang extract. Within pertinent density level, Chungpaesagan-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

Effect of Glial-neuronal Cell Co-culture on GFAP Expression of Astrocytes (신경세포가 별아교세포의 아교섬유성 산단백질 표현에 미치는 영향)

  • Bae Hyung-Mi;Park Jung-Sun;Yeon Dong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.285-296
    • /
    • 1997
  • Injury to brain transforms resting astrocytes to their reactive form, the hallmark of which is an increase in glial fibrillary acidic protein (GFAP), the major intermediate filament protein of their cell type. The overall glial response after brain injury is referred to as reactive gliosis. Glial-neuronal interaction is important for neuronal migration, neurite outgrowth and axonal guidance during ontogenic development. Although much attention has been given to glial regulation of neuronal development and regeneration, evidences also suggest a neuronal influence on glial cell differentiation, maturation and function. The aim of the present study was to analyze the effects of glial-hippocampal neuronal co-culture on GFAP expression in the co-cultured astrocytes. The following antibodies were used for double immunostaining chemistry; mouse monoclonal antibodies for confirm neuronal cells, rabbit anti GFAP antibodies for confirm astrocytes. Primary cultured astrocytes showed the typical flat polygonal morphology in culture and expressed strong GFAP and vimentin. Co-cultured hippocampal neurons on astrocytes had phase bright cell body and well branched neurites. About half of co-cultured astrocytes expressed negative or weak GFAP and vimentin. After 2 hour glutamate (0.5 mM) exposure of glial-neuronal co-culture, neuronal cells lost their neurites and most of astrocytes expressed strong CFAE and vimentin. In Western blot analysis, total GFAP and vimentin contents in co-cultured astrocytes were lower than those of primary cultured astrocytes. After glutamate exposure of glial-neuronal co-culture, GFAP and vimentin contents in astrocytes were increased to the level of primary cultured astrocytes. These results suggest that neuronal cell decrease GFAP expression in co-cultured astrocytes and hippocampal neuronal-glial co-culture can be used as a reactive gliosis model in vitro for studying GFAP expression of astrocytes.

  • PDF

Growth of Endothelial Cells on Microfabricated Silicon Nitride Membranes for an In Vitro Model of the Blood-brain Barrier

  • Harris, Sarina G.;Shuler, Michael L.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.4
    • /
    • pp.246-251
    • /
    • 2003
  • The blood-brain barrier (BBB) is composed of the brain capillaries, which are lined by endothelial cells displaying extremely tight intercellular junctions. Several attempts at creating an in vitro model of the BBB have been met with moderate success as brain capillary endothelial cells lose their barrier properties when isolated in cell culture. This may be due to a lack of recreation of the in vivo endothelial cellular environment in these models, including nearly constant contact with astrocyte foot processes. This work is motivated by the hypothesis that growing endothelial cells on one side of an ultra-thin, highly porous membrane and differentiating astrocyte or astrogliomal cells on the opposite side will lead to a higher degree of interaction between the two cell types and therefore to an improved model. Here we describe our initial efforts towards testing this hypothesis including a procedure for membrane fabrication and methods for culturing endothelial cells on these membranes. We have fabricated a 1 $\mu\textrm{m}$ thick, 2.0 $\mu\textrm{m}$ pore size, and 55% porous membrane with a very narrow pore size distribution from low-stress silicon nitride (SiN) utilizing techniques from the microelectronics industry. We have developed a base, acid, autoclave routine that prepares the membranes for cell culture both by cleaning residual fabrication chemicals from the surface and by increasing the hydrophilicity of the membranes (confirmed by contact angle measurements). Gelatin, fibronectin, and a 50/50 mixture of the two proteins were evaluated as potential basement membrane protein treatments prior to membrane cell seeding. All three treatments support adequate attachment and growth on the membranes compared to the control.

Past, Present, and Future of Brain Organoid Technology

  • Koo, Bonsang;Choi, Baekgyu;Park, Hoewon;Yoon, Ki-Jun
    • Molecules and Cells
    • /
    • v.42 no.9
    • /
    • pp.617-627
    • /
    • 2019
  • Brain organoids are an exciting new technology with the potential to significantly change our understanding of the development and disorders of the human brain. With step-by-step differentiation protocols, three-dimensional neural tissues are self-organized from pluripotent stem cells, and recapitulate the major millstones of human brain development in vitro. Recent studies have shown that brain organoids can mimic the spatiotemporal dynamicity of neurogenesis, the formation of regional neural circuitry, and the integration of glial cells into a neural network. This suggests that brain organoids could serve as a representative model system to study the human brain. In this review, we will overview the development of brain organoid technology, its current progress and applications, and future prospects of this technology.

Bacitracin Inhibits the Migration of U87-MG Glioma Cells via Interferences of the Integrin Outside-in Signaling Pathway

  • Li, Songyuan;Li, Chunhao;Ryu, Hyang-Hwa;Lim, Sa-Hoe;Jang, Woo-Youl;Jung, Shin
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.2
    • /
    • pp.106-116
    • /
    • 2016
  • Objective : Protein disulfide isomerase (PDI) acts as a chaperone on the cell surface, and it has been reported that PDI is associated with the tumor cell migration and invasion. The aims of this study are to investigate the anti-migration effect of bacitracin, which is an inhibitor of PDI, and the associated factor in this process. Methods : U87-MG glioma cells were treated with bacitracin in 1.25, 2.5, 3.75, and 5.0 mM concentrations. Western blot with caspase-3 was applied to evaluate the cytotoxicity of bacitracin. Adhesion, morphology, migration assays, and organotypic brain-slice culture were performed to evaluate the effect of bacitracin to the tumor cell. Western blot, PCR, and gelatin zymography were performed to investigate the associated factors. Thirty glioma tissues were collected following immunohistochemistry and Western blot. Results : Bacitracin showed a cytotoxicity in 3rd (p<0.05) and 4th (p<0.001) days, in 5.0 Mm concentration. The cell adhesion significantly decreased and the cells became a round shape after treated with bacitracin. The migration ability, the expression of phosphorylated focal adhesion kinase (p-FAK) and matrix metalloproteinase-2 (MMP-2) decreased in a bacitracin dose- and time-dependent manner. The U87-MG cells exhibited low-invasiveness in the 2.5 mM, compared with the untreated in organotypic brain-slice culture. PDI was expressed in the tumor margin, and significantly increased with histological glioma grades (p<0.001). Conclusion : Bacitracin, as a functional inhibitor of PDI, decreased the phosphorylated FAK and the secreted MMP-2, which are the downstream of integrin and play a major role in cell migration and invasion, might become one of the feasible therapeutic strategies for glioblastoma.