• Title/Summary/Keyword: brain activity

Search Result 1,646, Processing Time 0.024 seconds

Nutrients Intake and Dietary Quality of Korean Parkinson's Disease Patients According to the Duration of Disease (유병기간에 따른 한국인 파킨슨병 환자의 영양소 섭취 상태 및 식사의 질에 관한 연구)

  • Lee, Ju-Yeon;An, Tae-Beom;Jeon, Beom-Seok;Kim, Yun-Young;Choue, Ryo-Won
    • Korean Journal of Community Nutrition
    • /
    • v.13 no.4
    • /
    • pp.582-591
    • /
    • 2008
  • Both genetic and environmental factors play important roles in the pathogenesis of Parkinson Disease(PD). The contribution of many environmental factors including dietary factor remains unproven. The purpose the study was to investigate the dietary habits, nutrient intake and dietary quality of Korean PD patients according to the duration of disease. PD patients were recruited from K and S university hospitals from May 2005 to January 2006. This study was carried out after approval by the Institute Review Board(IRB). British Brain Bank criteria was used to diagnose PD. The subjects were classified into 2 groups based on the duration of PD: <25 months and $\geq$25 months groups. General characteristics, anthropometric measurements, food habits and dietary intakes were investigated. The results of this study were as follows: 1) The mean age of <25 months group($66.9{\pm}8.0$ yr) was significantly higher than that of $\geq$25 months group($62.2{\pm}8.8$ yr)(p<0.05). No significant differences were found for academic background, occupation, living status and social activity, however, numbers of diseases, exercise and family history of PD were significantly different. 2) Anthropometric measurements were not different between the two groups. 3) The frequency of taking snacks was significantly higher in <25 months group and the amounts of alcohol consumption were significantly higher in $\geq$25 months group. 4) Daily intakes of most nutrients were very low compared with DRI. 5) The MAR score was significantly lower in <25 months group(p<0.05;) however, the scores of DVS, DDS and DQI were not significantly different. As a conclusion an overall nutrient intake and dietary quality of the Parkinson's Disease patients need to be improved regardless of duration of the disease and a well-balanced diet should be emphasized.

Betulinic Acid Inhibits LPS-Induced MMP-9 Expression by Suppressing NF-kB Activation in BV2 Microglial Cells

  • Lee, Jae-Won;Choi, Yong-Joon;Kim, Song-In;Lee, Sue-Young;Kang, Sang-Soo;Kim, Nam-Ho;Kwon, Yong-Soo;Lee, Hee-Jae;Chun, Wan-Joo;Kim, Sung-Soo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.4
    • /
    • pp.431-437
    • /
    • 2011
  • Aberrant activation of microglia has been reported to cause neuronal damages by releasing a variety of pro-inflammatory cytokines. Besides where microglia become active, damages have been also observed in remote places, which is considered due to the migration of activated microglia. Therefore, an agent that could suppress abnormal activation of microglia and their subsequent migration might be valuable in activated microglia-related brain pathologies. The objective of the present study was to evaluate anti-inflammatory effects of betulinic acid on lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Pretreatment of betulinic acid significantly attenuated LPS-induced NO production and protein expression of iNOS. Betulinic acid also significantly suppressed LPS-induced release and expression of cytokines such as TNF-${\alpha}$ and IL-$1{\beta}$. Furthermore, betulinic acid significantly uppressed LPS-induced MMP-9 expression, which has been suggested to play an important role in the migration of activated microglia. In order to understand the possible mechanism by which betulinic acid suppresses LPS-induced cytokine production and migration of microglia, the role of NF-kB, a major pro-inflammatory transcription factor, was examined. Betulinic acid significantly suppressed LPS-induced degradation of IKB, which retains NF-kB in the cytoplasm. Therefore, nuclear translocation of NF-kB upon LPS stimulation was significantly suppressed with betulinic acid. Taken together, the present study for the first time demonstrates that betulinic acid possesses anti-inflammatory activity through the suppression of nuclear translocation of NF-kB in BV2 microglial cells.

Resveratrol Induces Cell Death through ROS-dependent MAPK Activation in A172 Human Glioma Cells (사람의 신경교모세포종 기원 세포에서 레스베라트롤에 의한 활성산소종 생성 증가와 MAPK 활성화를 통한 세포 사멸 효과)

  • Jung, Jung Suk;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.212-219
    • /
    • 2016
  • Glioblastoma multiforme is the most common and most aggressive type of primary brain tumor in humans. Despite intensive treatment, including surgery, radiation, and chemotherapy, most patients die of the disease. Although the anti-cancer activity of resveratrol has been demonstrated in various cancer cell types, its underlying mechanism in glioma cells is not fully elucidated. The present study was undertaken to investigate the effect of resveratrol on cell viability and to determine the molecular mechanism in A172 human glioma cells. Resveratrol caused the generation of reactive oxygen species (ROS), and resveratrol-induced cell death was prevented by antioxidants (N-acetylcysteine and catalase), suggesting that an oxidative mechanism is responsible for resveratrol-induced cell death. Resveratrol-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38 kinase, and c-Jun N-terminal kinase (JNK), and resveratrol-induced cell death were prevented by inhibitors of these kinases. Resveratrol-induced activation of caspase-3 and cell death were prevented by the caspase inhibitors. ERK activation and caspase-3 activation induced by resveratrol was blocked by N-acetylcysteine. Taken together, these results suggest that resveratrol causes a caspase-dependent cell death via activation of ERK, p38, and JNK, mediated by ROS generation, in human glioma cells.

THE AFFINITY OF CALMODULIN-AFFIGEL FOR INOSITOL TRIPHOSPHATE KINASE FROM BOVINE BRAIN (소의 뇌 Inositol triphosphate kinase와 Calmodulin-Affigel과의 친화도)

  • Lim, Sung-Woo;Kim, Jung-Hye
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1990
  • The one event on signalling mechanism is the cleavage by adenyl cyclase of ATP into second messenger, cyclic AMP. The other transfer system of inositol metabolism. it is widely recognized that hydrolysis of the minor membrane lipid phosphoinositide bisphosphate($PIP_2$) initiated by occupation of certain receptors and catalyzed by phospholipase C, lead to toe generation of the two intracellular messengers, inositol triphosphate($IP_3$) and diacylglycerol(DG). $IP_3$ is converted to inositol tetrakisphosphate($IP_4$) by $IP_3$ kinase. In the present study, it is that purification of calmodulin is used by phenyl-Sepharose CL-4B chromatography. it's molecular weigh, 17.000 in SDS-polyacrylamide gel electrophoresis. In order to observe the affinity between calmodulin (CaM)-Affigel 15 and $IP_3$ kinase, and isolated $IP_3$ kinase, was applied in CaM-Affigel with $Ca^{2+}$ equilibirum buffer and EGTA equilibirum buffer. We compared with binding and elution effect of $IP_3$ kinase in several condition of buffer. In affinity of binding. $Ca^{2+}$ equilibrium buffer was in the most proper condition. and elution, CaM/$Ca^{2+}$ buffer(CE1 10.36, CE2 12. 76pM/min/mg of protein) was effected much more than EGTA buffer(E2 1.48, E3 2.43pM/min/mg of protein), but CaM/$Ca^{2+}$ stimulate the activity of $IP_3$ kinase. And then, several detergents such as sodium deoxycholate, tween 20. cholic acid, polyethylene glycol, chaps were applied. The 0.2% chaps buffer(E2 23.19, E3 8.05pM/min/mg of protein) was the most effective in elution of $IP_3$ kinase.

  • PDF

Neuroprotective Effects of Kaempferol, Quercetin, and Its Glycosides by Regulation of Apoptosis (Kaempferol, quercetin 및 그 배당체들의 apoptosis 조절을 통한 신경세포 보호 효과)

  • Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.286-293
    • /
    • 2019
  • Alzheimer's disease (AD) is a neurodegenerative disease caused by accumulation of amyloid beta ($A{\beta}$) in the brain. In the present study, we investigated the neuroprotective effects of four flavonoids such as kaempferol, kaempferol-3-O-glucoside, quercetin, and quercetin-3-${\beta}$-D-glucoside against neuronal apoptosis induced by $A{\beta}$ in SH-SY5Y neuronal cells. Treatment with $A{\beta}$ decreased cell viability compared to the non-treated normal group. However, treatment with the four flavonoids increased cell viability in SH-SY5Y cells treated with $A{\beta}$. In addition, we measured the expression of apoptosis-related proteins such as Bcl-2-associated X protein (Bax) and cleaved caspase-9. Treatment with the four flavonoids down-regulated Bax and cleaved caspase-9 in $A{\beta}$-treated SH-SY5Y neuronal cells. Overall, the results of the present study demonstrated the neuroprotective effect of flavonoids by anti-apoptotic activity in $A{\beta}$-induced SH-SY5Y neuronal cells. These results suggest that these four flavonoids would be useful therapeutic and prevention agents for AD.

A Study on the Effectiveness of Rehabilitation by Virtual Reality Program: Systematic Review (가상현실 프로그램을 사용한 재활치료의 효과성 연구: 체계적 고찰)

  • Park, Da-Sol;Shin, Ga-In;Woo, Ye-Shin;Park, Hae Yean
    • 재활복지
    • /
    • v.22 no.3
    • /
    • pp.209-224
    • /
    • 2018
  • The purpose of this study is to provide a basic data about the virtual reality rehabilitation therapy to the occupational therapist in the domestic clinical field by systematically analyzing the types and effects of the rehabilitation therapy using the virtual reality program. Research articles were retrieved from January 2007 to December 2017 using the Research Information Sharing Service (RISS), Google Scholar, and Pubmed database. The main search terms were 'Virtual Reality AND Rehabilitation' and 'Virtual reality AND Effect'. Finally, 10 foreign studies were selected as the subjects of this study. Selected studies were organized using PICO (Patient, Intervention, Comparison, Outcome) format. The results were as follows: The subjects were divided into 4 types, stroke, brain tumor, Parkinson 's disease, and kidney disease. The tools used for arbitration were three IREX (30 %), two X-box Kinect (20 %), two Nintendo Wii (20 %), one [Existing tool + VR] (10 %), one [Mobile application + VR] (10 %). As a result of the intervention, improvement of function was observed in all 10 studies from overseas, and physical function was 24 times (66 %), mental function 6 times (17 %), cognitive function 5 times (14 %), Activity of daily living 1 time (10 %). this study could be used as a basic resource to enhance the professionalism and quality of rehabilitation services and expand the scope by organizing virtual reality-based rehabilitation and its effects.

Increased Antioxidative Activity of Fermented Ligusticum striatum Makino Ethanol Extract by Bioconversion using Lactobacillus plantarum BHN-LAB 129 (Lactobacillus plantarum BHN-LAB 129의 생물전환공정을 통한 천궁 발효 추출물의 항산화 활성 증대)

  • Kim, Byung-Hyuk;Jeong, Su Jin;Jang, Jong-Ok;Lee, Jun-Hyeong;Park, YeEun;Kim, Jung-Gyu;Kwon, Gi-Seok;Hwang, Hak-Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.29 no.8
    • /
    • pp.846-853
    • /
    • 2019
  • Phytochemical compounds of Ligusticum striatum Makino are used as traditional medicinal herbs in Asia. These compounds are reported to have pain relief and antioxidant activities in gynecological and brain diseases. In this study, we investigated the antioxidant effects of Ligusticum fermented ethanol extract from Lactobacillus plantarum BHN-LAB 129 isolated from Kimchi, a Korean traditional food. The total polyphenol and total flavonoid contents increased by about 116.2% and 281.0% respectively, in the fermented Ligusticum extract as compared with those in the nonfermented Ligusticum ethanol extract. Superoxide dismutase-like (SOD), DPPH radical scavenging, ABTS radical scavenging, and reducing power activities increased by around 139.9%, 199.6%, 301.0%, and 137.1%, respectively, in the fermented Ligusticum ethanol extract as compared with these parameters in the nonfermented Ligusticum ethanol extract, respectively. In conclusion, the fermented Ligusticum ethanol extract with L. plantarum BHN-LAB 129 was effective in increasing the antioxidant effects. The bioconversion process in this study points to the potential of using Ligusticum to produce phytochemical-enriched natural antioxidant agents with high added value. The findings may prove useful in the development of improved foods and cosmetic materials.

Target engagement of ginsenosides in mild cognitive impairment using mass spectrometry-based drug affinity responsive target stability

  • Zhu, Zhu;Li, Ruimei;Qin, Wei;Zhang, Hantao;Cheng, Yao;Chen, Feiyan;Chen, Cuihua;Chen, Lin;Zhao, Yunan
    • Journal of Ginseng Research
    • /
    • v.46 no.6
    • /
    • pp.750-758
    • /
    • 2022
  • Background: Mild cognitive impairment (MCI) is a transitional condition between normality and dementia. Ginseng is known to have effects on attenuating cognitive deficits in neurogenerative diseases. Ginsenosides are the main bioactive component of ginseng, and their protein targets have not been fully understood. Furthermore, no thorough analysis is reported in ginsenoside-related protein targets in MCI. Methods: The candidate protein targets of ginsenosides in brain tissues were identified by drug affinity responsive target stability (DARTS) coupled with label-free liquid chromatography-mass spectrometry (LC-MS) analysis. Network pharmacology approach was used to collect the therapeutic targets for MCI. Based on the above-mentioned overlapping targets, we built up a proteineprotein interaction (PPI) network in STRING database and conducted gene ontology (GO) enrichment analysis. Finally, we assessed the effects of ginseng total saponins (GTS) and different ginsenosides on mitochondrial function by measuring the activity of the mitochondrial respiratory chain complex and performing molecular docking. Results: We screened 2526 MCI-related protein targets by databases and 349 ginsenoside-related protein targets by DARTS. On the basis of these 81 overlapping genes, enrichment analysis showed the mitochondria played an important role in GTS-mediated MCI pharmacological process. Mitochondrial function analysis showed GTS, protopanaxatriol (PPT), and Rd increased the activities of complex I in a dose-dependent manner. Molecular docking also predicted the docking pockets between PPT or Rd and mitochondrial respiratory chain complex I. Conclusion: This study indicated that ginsenosides might alleviate MCI by targeting respiratory chain complex I and regulating mitochondrial function, supporting ginseng's therapeutic application in cognitive deficits.

Changes in Electrophysiological Activation Due to Different Levels of Cognitive Load (인지부하의 정도에 따른 뇌신경생리학적 변화)

  • Kwon, Joo-Hee;Kim, Euijin;Kim, Jeonghui;Im, Chang-Hwan;Kim, Do-Won
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.52-60
    • /
    • 2022
  • Purpose: For now, cognitive load is assessed based on survey-based methods, which can be difficult to track the amount of cognitive load in real-time. In this study, we investigated the difference in electrophysiological activation due to different levels of cognitive load not only at sensor-level but also at source-level using electroencephalogram that might be potentially used for quantitative cognitive load evaluation. Materials and Methods: In this study, ten healthy subjects (mean age 24.3 ± 2.1, three female) participated the experiment. All participants performed 4 sessions of n-back task in different difficulties: 0-, 1-, 2-, and 3-back during electroencephalogram recording. For sensor-level analysis, we calculated the event-related potential and event-related spectral perturbation while low resolution brain electromagnetic tomography (LORETA) to estimate the source activation. Each result was compared between different workload conditions using statistical analysis. Results: Statistical results revealed that the accuracy of the task performance was significantly different between different cognitive loads (p = 0.018). The post-hoc analysis confirmed that the accuracy of the 3-back task was significantly decreased compared to 1-back condition (p = 0.018), but not with 2-back condition (p = 0.180). ERP results showed that P300 target amplitude between 1-back and 3-back had a marginal difference in Cz (p = 0.059) and Pz(p = 0.093). A significant inhibition in Cz high-beta activation (p = 0.017) and decrease in source activation of right parahippocampal gyrus was found in 3-back condition compared to 1-back condition (p < 0.05). Conclusion: In this study, we compared the sensor- and source-level differences in electroencephalogram between different levels of cognitive load, that were found to be in line with the previous reports related to cognitive load evaluation. We expect that the outcome of the current study can be used as a feature to establish a quantitative cognitive load assessment system.

The Effect of Treadmill Exercise and Environmental Enrichment on Cognitive Function, Muscle Function, and Levels of tight junction protein in an Alzheimer's Disease Animal Model (트레드밀 운동 및 환경강화가 알츠하이머 질환 동물 모델의 인지기능, 근 기능 및 밀착연접 단백질 수준에 미치는 영향)

  • Hyun-Seob Um;Jong-Hwan Jung;Tae-Kyung Kim;Yoo-Joung Jeon;Joon-Yong Cho;Jung-Hoon Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.58-68
    • /
    • 2024
  • The purpose of this study was to investigate the effects of treadmill exercise treadmill exercise (TE) and environmental enrichment (EE) interventions on cognitive function, muscle function, and the expression of tight junction proteins in an Alzheimer's disease (AD) animal model. To create the AD animal model, aluminum chloride (AlCl3) was administered for 90 days (40mg/kg/day), while simultaneously exposing the animals to TE (10-12m/min, 40-60min/day) or EE. The results showed that cognitive impairment and muscle dysfunction induced by AlCl3 administration were alleviated by TE and EE. Furthermore, TE and EE reduced the increased expression of β-amyloid(Aβ), alpha-synuclein, and tumor necrosis factor-α (TNF-α) proteins observed in AD pathology. Additionally, TE and EE significantly increased the expression of decreased adhesive adjacent proteins (Occludin, Claudin-5, and ZO-1) induced by AlCl3 administration. Lastly, correlation analysis between Aβ protein and tight junction proteins showed negative correlations (Occludin: r=-0.853, p=0.001; Claudin-5: r=-0.352, p=0.915; ZO-1: r=-0.424, p=0.0390). In conclusion, TE or EE interventions are considered effective exercise methods that partially alleviate pathological features of AD, improving cognitive and muscle function.