• Title/Summary/Keyword: bracket

Search Result 785, Processing Time 0.029 seconds

Lightweight Design of Brake Bracket for Composite Bogie Using Topology Optimization (위상 최적 설계를 통한 복합소재 대차프레임용 제동장치 브래킷의 경량화 연구)

  • Lee, Woo Geun;Kim, Jung Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.283-289
    • /
    • 2015
  • In this study, the lightweight design of a brake bracket for a composite bogie was studied by considering two brake bracket models with thicknesses of 12t and 9t, respectively. For achieving this goal, finite element analysis and topology optimization were conducted. Firstly, the largest cross-sectional areas of the vertical and horizontal plates of the brake bracket were selected as the design variables. As the constraint, the Z-axis displacement of the brake bracket was increased by 2.5 units from the initial displacement value. The minimum volume fraction of the design regions was chosen as the objective function. The full model comprised a composite bogie frame and brackets attached together. However, to reduce the analysis time, 1D beam elements were used instead of the composite bogie frame by ensuring its equivalence with the full model. The result revealed that the weights of the 12t and 9t models of the brake bracket were reduced to 60 kg and 31 kg, respectively.

A study on weight reduction of bracket using CAE program (CAE 프로그램을 이용한 브래킷 경량화에 관한 연구)

  • Kang, Hyung-Suk;Han, Bong-Suk;Han, Yu-Jin;Choi, Doo-Sun;Kim, Tae-Min;Shin, Bong-Cheol;Song, Ki-Hyeok
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2018
  • Recently The automotive industry is trying to increase the energy efficiency by reducing the weight of the car body and engine components as a way to achieve high energy efficiency. In particular, the reduction of the weight of the vehicle through the weight reduction of the vehicle body has the advantage that the fuel consumption and the output can be improved. But at the same time, there is the disadvantage that the strength becomes weak due to the reduction of the material thickness. Therefore, in order to overcome these disadvantages, materials with high strength according to the unit thickness have been actively developed, and researches for applying them have also been increasing. In this study, we will investigate the application of cold rolled steel sheet, which is a lightweight material, to a horn bracket that secures a installed in an automobile engine room. The horn bracket secures the horn on the car engine and is bolted to the outer wall of the engine. The momentum is acted on the bracket due to the distance between the bolt fastening part and the car horn installed on the bracket end side. Therefore, the body part of the bracket is more likely to be destroyed by the influence of the continuous stress. In this paper, design optimization for weight reduction and strength enhancement was performed to solve this problem, and possibility of applying the rolled steel sheet material as lightweight material by tensile test and fabrication was confirmed.

Evaluation of frictional forces between orthodontic brackets and archwires (교정용 브라켓과 교정선 사이의 마찰력)

  • Jeong, Tae-Jong;Choie, Mok-Kyun
    • The korean journal of orthodontics
    • /
    • v.30 no.5 s.82
    • /
    • pp.613-623
    • /
    • 2000
  • The purpose of this study was to amount of the frictional forces with the brackets and wires, ligation methods, dry/wet, offsets, interbracket distances, velocity and to compare them each other by different conditions. This study tested 0.018'x0.025' slot sized 8 types of orthodontic bracket systems and 0.016', 0.016'x0.022' sized stainless steel, NiTi, Cu-NiTi orthodontic wires. One cuspid bracket were positioned on the slide glass and archwire was engaged into bracket and ligated with elastomeric modules. The values of frictional forces were measured with the instron universal testing machine. The results were as follows; 1. Polycrystalline ceramic bracket had the highest mean frictional forces and followed and by ceramic reinforced plastic bracket, metal bracket, plastic bracket with metal slot, monocrystalline ceramic bracket, single bracket, self-ligating bracket, friction free bracket in descending order. The self-ligating bracket showed low frictional forces in the round wires and high frictional forces in the rectangular wires. 2. Stainless steel wires had the least frictional forces and followed by NiTi, Cu-NiTi wires in descending order. Round wires had lower frictional forces then that of rectangular wires. 3. The stainless steel ligation method had significantly greater mean frictional forces them the elastomeric module ligation method. 4. Artificial saliva statistically increased the frictional forces in stainless steel wire, NiTi wire and Cu-NiTi wire. 5. There was a statistically significant difference with offset change 6. There was no statistically significant difference with interbracket distance in stainless steel wires but a significant difference in NiTi wires as the interbracket was decreased. 7 There was no statistically significant difference with velocity change. From the above findings, self-ligating bracket, stainless steel wires and the elastomeric module ligation method might be effective than any other materials to reduce the frictional forces in the orthodontic treatment and can be correlated to clinical situations seen in orthodontic patient care.

  • PDF

An experimental study of dynamic frictional resistance between orthodontic bracket and arch wire (교정용 브라켓과 강선 사이의 운동마찰저항력에 관한 실험적 연구)

  • Lee, Jae-Hwan;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.31 no.4 s.87
    • /
    • pp.467-477
    • /
    • 2001
  • This investigation was designed to determine the effects of wire size, bracket width and the number of bracket on bracket-wire dynamic frictional resistance during simulating arch wire-guided tooth movement in vitro. For simulation of an arch wire-guided tooth movement, we simulated tooth, periodontal ligament and cancellous bone. Maxillary premolar and 1st molar were simulated as real sized resin teeth, the simulated resin teeth which its root was coated by polyether impression material which its elastic modulus is similar to periodontal ligament were embedded in steel housing with inlay wax which its elastic modulus is similar to cancellous bone. Stainless steel wires in four wire size (0.016, 0.018, $0.016\;{\times}\;0.022,\;0.019\;{\times}\;0.025$ inch) were examined with respect to three (stainless steel) bracket widths (2.4, 3.0, 4.3mm) and the number of medium bracket(one, two, three) included in the experimental assembly under dry condition. The wires were ligated into the brackets with elastomeric module. The results were as follows : 1. In all the brackets, frictional resistance increased with increase in wire size. But, statistically similar levels of frictional resistance were observed between 0.018 inch and $0.016\;{\times}\;0.022$ inch wires in narrow bracket and also between 0.016 inch and 0.018 inch wire in wide backet. 2. The frictional forces produced by 0.016 inch wire were statistically similar levels in all the brackets. In 0.018 inch round wire, wide bracket was associated with lower amounts of friction than both narrow and medium brackets. In $0.016\;{\times}\;0.022,\;0.019\;{\times}\;0.025$ inch rectangular wire, wide bracket produced target friction than both narrow and medium brackets. In all the wirer, narrow and medium bracket demonstrated no statistical difference in levels of frictional resistance. 3. Frictional resistance increased with increase In number of medium bracket. 0.016 inch round wire demonstrated the greatest increment in frictional resistance, followed by $0.019\;{\times}\;0.025,\;0.016\;{\times}\;0.022$ inch rectangular wire which were similar level in increment of frictional resistance, 0.018 inch wire demonstrated the least increment. The increments of frictional resistance were not constantly direct proportion to number of bracket.

  • PDF

Cleft lip and palate patient treatment using self-ligating bracket and distraction osteogenesis: A case report (자가결찰 브라켓과 골신장술을 이용한 구순구개열 환자의 치험례)

  • Moon, Cheol-Hyun;Park, Sun-Kyu
    • The Journal of the Korean dental association
    • /
    • v.47 no.10
    • /
    • pp.656-668
    • /
    • 2009
  • It is difficult to perform orthodontic treatment for cleft lip and palate patient. Although there are many orthodontic appliances to expand narrowed maxillary arch, results are rarely successful and the possibility of relapse is increased due to severe scars. Self-ligating bracket, recently used in orthodontic treatment, suggests solution of crowding by expansion of dental arches. Light and continuous force could apply for orthodontic movement due to characteristic low friction of self ligating bracket, which gives expansion force until dentition reaches its new equilibrium position and it can be expressed as spontaneous lateral expansion with heavy labial tension. This kind of expansion force is thought to be a possibility of expanding the constricted maxillary arch of cleft lip and palate patient. Repositioning of the maxilla by Le Fort I osteotomy in case of severe maxillary deficiency, increases the possibility of relapse because of limitation in anterior movement and adaptation of soft tissue. In these cases, distraction osteogenesis(DO) can be applied for stable result. We report a case of cleft lip and palate patient with narrowed maxillary arch and maxillary deficiency using self ligating bracket and DO.

  • PDF

Structural Analysis of Engine Mounting Bracket (엔진 마운팅 브라켓의 구조해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.525-531
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the configuration of engine mount. Maximum equivalent stress or deformation is shown at bracket or case respectively. As harmonic vibration analysis, the maximum displacement amplitude is happened at 4,000Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' or 'Saw tooth' becomes most stable. In case of 'Sample history' or 'Saw tooth' with the average stress of 4,200MPa or 0MPa and the amplitude stress of -3,000MPa or 7MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 7 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on engine mount by investigating prevention and durability against its damage.

Optimum Design of Bracket for Satellite Antenna (위성안테나 브레켓의 최적설계)

  • Hwang, Tae-Kyung;Lim, O-Kaung;Lee, Jin-Sick;Lee, Jong-Ok
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.451-455
    • /
    • 2003
  • Major concern in modern industry is how to reduce the time and cost for product efficient production. Among many mechanical parts of a satellite, bracket plays an important role to support the load when the satellite is launched to space. so enough strength and stiffness. A designer could add unnecessary material and strength it so as not to fail when it used. But if mechanical part of satellite is over-designed, cost will rise and it also goes against to the aim of lightness. To achieve lightness and enough strength and stiffness, optimization algorithm should be introduced in design process. In this study, conceptual design of bracket is carried out to increase the performance of satellite. Some parameter which could change the weight of this part are selected as design variables. Total weight of bracket is to be minimized while displacement and stress should not exceed limit. Size optimization is done with 3D solid element and PLBA, the RQP algorithm. The weight of 0.262kg of initial model is reduced to 0.241kg after optimization process, so 9.8% of weight reduction is obtained.

  • PDF

A STUDY ON THE CHANCES OF FRICTIONAL FORCE BETWEEN BRACKET AND ORTHODONTIC WIRE WITH TIME IN ARTIFICIAL SALIVA (시간경과에 따른 교정용 bracket과 교정선 사이의 마찰력 변화에 관한 연구)

  • Kwak, Chun;Kim, Jim-Bom;Son, Woo-Sung
    • The korean journal of orthodontics
    • /
    • v.23 no.2 s.41
    • /
    • pp.283-294
    • /
    • 1993
  • The friction of orthodontic appliances is recogonized to be detrimental to tooth movement. The purpose of this study was to determine the magnitude of frictional force changes between bracket$(018'\times025'\;solt)$ and orthodontic wires(stainless steel, cobalt-chromium, and $\beta-titanium$, $017'\times0.25'$ rectangular) with time. The wire was secured in the bracket slot with a elastomeric ligature. Frictional forces were measured by universal testing machine. The following conclusions were obtained. 1. The frictional forces under dry condition were greater than those in saliva. 2. The frictional forces produced by cobalt-chromium wire were less than those generated by stainless steel and $\beta-titanium$ wire. 3. The frictional forces increased progressively with time, and the amount of increase on first two weeks was greater than on last two weeks. 4. The change of frictional force under dry condition was greater than in artificial saliva.

  • PDF