• 제목/요약/키워드: bphC gene

검색결과 19건 처리시간 0.023초

Cloning and Phylogenetic Analysis of Two Different bphC Genes and bphD Gene From PCB-Degrading Bacterium, Pseudomonas sp. Strain SY5

  • Na, Kyung-Su;Kim, Seong-Jun;Kubo, Motoki;Chung, Seon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.668-676
    • /
    • 2001
  • Pseudomonas sp. strain SY5 is a PCB-degrading bacterium [24] that includes two different enzymes (BphC1 and BphC2) encoding 2,3-dihdroxybiphenyl 1,2-dioxygenase and BphD encoding 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase. The bphC1 and bphC2 genes were found to consist of 897 based encoding 299 amino acids and 882 bases encoding 294 amino acids, respectively, whereas the bphD gene consisted of 861 bases encoding 287 amino acids. According to a homology search, a 50% and 39% similarity between the bphC1 and bphC2 genes at the nucleotide and amino acid level was shown, respectively. The bphC1 gene showed a 38% and 45% similarity at the amino acid level to Alcaligenes eutrophus A5 and Rhodococcus rhodochrous, respectively, whereas, bphC2 showed a 95% and 43% similarity, respectively. A comparison of the deduced amino acid sequence of the bphD product of Pseudomonas sp. SY5 with that of A. eutrophus A5, Pseudomons sp. KKS102, and LB400 showed a sequence identity of 92, 92, and 79%, respectively. Strain SY5 was originally isolated from municipal sewage containing recalcitrant organic compounds an found to have a high degradability of various aromatic compounds [23]. The current study found that strain SY5 had two extradiol-type dioxygenases, which did not hybridize with each other as they had a low similarity, yet a similar structure of evolutionarily conserved amino acids residues for catalytic activity between BphC1 and BphC2 was observed.

  • PDF

Monitoring Expression of bphC Gene from Ralstonia eutropha H85O Induced by Plant Terpenes in Soil

  • Jung, Kyung-Ja;Kim, Byung-Hyuk;Kim, Eungbin;So, Jae-Seong;Koh, Sung-Cheol
    • Journal of Microbiology
    • /
    • 제40권4호
    • /
    • pp.340-343
    • /
    • 2002
  • A PCB degrader, Ralstonia eutropha H850 was shown to induce bphC gene encoding 2,3-dihydroxy-biphenyl-1,2-dioxygenase in a carvone-amended pure culture in our previous study (Park et al.,1999). The present study was carried out to examine how plant terpenes, as natural substrates, would cause an expression of a PCB degradative gene in soil that was amended with terpenes. The population of Ralstonia eutropha H850 was maintained at least around 10$\^$8/ (CFU/g fresh soil) in the soil amended with carvone or limonene in the presence of succinate as a growth substrate at 50 th day. The gene expression was monitored by RT-PCR using total RNA directly extracted from each soil and bphC gene primers. The bphC gene expression of the seeded strain H850 was observed in the soil amended with biphenyl (4 days) but not with succinate, carvone and limonene. These results indicate that terpenes widely distributed in nature could be a potential inducing substrate for effective PCB biodegration in the soil but their bioavailability and specific induction behavior should be taken into account before PCB bioremediation implementation.

Identification of a Rice Gene (Bph 1) Conferring Resistance to Brown Planthopper (Nilaparvata lugens Stal) Using STS Markers

  • Kim, Suk-Man;Sohn, Jae-Keun
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.30-34
    • /
    • 2005
  • This study was carried out to identify a high-resolution marker for a gene conferring resistance to brown planthopper (BPH) biotype 1, using japonica type resistant lines. Bulked segregant analyses were conducted using 520 RAPD primers to identify RAPD fragments linked to the BPH resistance gene. Eleven RAPDs were shown to be polymorphic amplicons between resistant and susceptible progeny. One of these primers, OPE 18, which amplified a 923 bp band tightly linked to resistance, was converted into a sequence-tagged-site (STS) marker. The STS marker, BpE18-3, was easily detectable as a dominant band with tight linkage (3.9cM) to Bph1. It promises to be useful as a marker for assisted selection of resistant progeny in backcross breeding programs to introgress the resistance gene into elite japonica cultivars.

Identification of the bphC Gene for meta-Cleavage of Aromatic Pollutants from a Metagenomic Library Derived from Lake Waters

  • Moon Mi-Sook;Lee Dong-Hun;Kim Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권5호
    • /
    • pp.393-399
    • /
    • 2004
  • Useful genes can be Screened from various environments by construction of metagenomic DNA libraries. In this study, water samples were collected from several lakes in mid Korea, and analyzed by T-RFLP to examine diversities of the microbial communities. The crude DNAs r were extracted by the SDS-based freezing-thawing method, and then further purified using an $UltraClean^{TM}$ kit (MoBio, USA). The metagenomic libraries were constructed with the DNAs partially digested with EcoR I, BamH I, and Sac II in Escherichia coli DH 10B using the pBACe3.6 vector. About 44.0 Mb of metagenomic libraries were obtained with average inserts 13-15 kb in size. The bphC genes responsible for degradation of aromatic hydrocarbons via mets-cleavage were identified from the metagenomic libraries by colony hybridization using the bphC specific sequence as a probe. The 2,3-dihydroxybiphenyl (2, 3-DHBP) dioxygenase gene (bphC ), capable of degradation of 2,3-DHBP, was cloned and its nucleotide Sequences analyzed. The genes consisted of 966 and 897 base pairs with an ATG initiation codon and a TGA termination codon. The activity of the 2,3-DHBP dioxygenase was highly expressed to 2,3-DHBP and Showed a broad substrate range to 2,3-DHBP, catechol, 3-methylcatechol and 4-methylcatechol. These results in-dicated that the bphC gene identified from the metagenomes derived from lake water might be useful in the development of a potent strain for degradation of aromatic pollutants.

Molecular Mapping of Resistant Genes to Brown Planthopper, Bphl and bph2, in Rice

  • Cha, Young-Soon;Cho, Yong-Gu;Shin, Kyeong-Og;Yeo, Un-Sang;Choi, Jae-Eul;Eun, Moo-Young
    • 한국작물학회지
    • /
    • 제44권4호
    • /
    • pp.345-349
    • /
    • 1999
  • This study was carried out to map Bphl and bph2 gene in Mudgo and Sangju13 (Oryza sativa L.) respectively conferring resistance to brown plan-thopper (BPH) and to establish the marker-assisted selection (MAS) system. Bulked seedling (grown for 20 days) test was conducted with the 73 F4 lines derived from a cross between Nagdongbyeo and Mudgo for Bphl and with 53 BC3F5 lines derived from the Milyang95/Sangju13 cross for bph2. Bph1 was mapped between RG413 and RG901 on chromo-some 12 at a distance of 7.5 cM from RG413 and 8.4 cM from RG90l. A recessive gene bph2 was located near RZ76 on chromosome 12 at a distance of 14.4 cM. Bphl and bph2 were linked to each other with a distance of about 30 cM. An RFLP marker, RG413 linked to Bphl, was converted to an STS marker to facilitate the marker-assisted selection. BPH resistant genotypes could be selected with 92% accuracy in a population derived from a line of NM47-B-B.

  • PDF

Versatile Catabolic Properties of Tn4371-encoded bph Pathway in Comamonas testosteroni (Formerly Pseudomonas sp.) NCIMB 10643

  • Kim, Jong-Soo;Kim, Ji-Hyun;Ryu, Eun-Kyeong;Kim, Jin-Kyoo;Kim, Chi-Kyung;Hwang, In-Gyu;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.302-311
    • /
    • 2004
  • Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643 can grow on biphenyl and alkylbenzenes $(C_2-C_7)$ via 3-substituted catechols. Thus, to identify the genes encoding the degradation, transposon-mutagenesis was carried out using pAG408, a promoter-probe mini-transposon with a green fluorescent protein (GFP), as a reporter. A mutant, NT-1, which was unable to grow on alkylbenzenes and biphenyl, accumulated catechols and exhibited an enhanced expression of GFP upon exposure to these substrates, indicating that the gfp had been inserted in a gene encoding a broad substrate range catechol 2,3-dioxygenase. The genes (2,826 bp) flanking the gfp cloned from an SphI-digested fragment contained three complete open reading frames that were designated bphCDorfl. The deduced amino acid sequences of bphCDorfl were identical to 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC), 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (BphD), and OrfI, respectively, that are all involved in the degradation of biphenyl/4-chlorobiphenyl (bph) by Ralstonia oxalatica A5. The deduced amino acid sequence of the orfl revealed a similarity to those of outer membrane proteins belonging to the OmpW family. The introduction of the bphCDorfl genes enabled the NT-l mutant to grow on aromatic hydrocarbons. In addition, PCR analysis indicated that the DNA sequence and gene organization of the bph operon were closely related to those in the bph operon from Tn4371 identified in strain A5. Furthermore, strain A5 was also able to grow on a similar set of alkylbenzenes as strain NCIMB 10643, demonstrating that, among the identified aromatic hydrocarbon degradation pathways, the bph degradation pathway related to Tn4371 was the most versatile in catabolizing a variety of aromatic hydrocarbons of mono- and bicyclic benzenes.

청청벼에서 유래한 벼멸구 저항성관련 RAPD Marker의 개발 (Development of RAPD Marker Related to Brown Planthopper Resistance Gene Derived from Rice Cultivar, Cheongcheongbyeo)

  • 서지훈;김경민;김석만;손재근
    • 한국작물학회지
    • /
    • 제50권6호
    • /
    • pp.453-456
    • /
    • 2005
  • 본 연구에서는 벼멸구 저항성 품종인 '청청벼'와 감수성이면서 자포니카형 벼인 '낙동벼'를 교배한 DH 계통 및 $F_2$집단을 이용하여 벼멸구 저항성과 DNA marker와의 관계를 분석하였다. 1. 520개의 RAPD marker를 이용하여 양친에 다형성을 보이는 310개의 marker를 찾았고 이들을 대상으로 한 BSA를 통해 벼멸구 저항성과 관련있을 것으로 보이는 17개의 marker를 선발하였다. 2. 벼의 12번 염색체상에 위치한 38개의 SSR marker를 사용하여 모${\cdot}$부본에 대한 다형성 검정을 실시한 바, 17개의 SSR marker를 선발할 수 있었다. 3. BSA를 통해 선발된 17개의 RAED marker와 DH 계통의 벼멸구 저항성과의 관계를 분석하여 벼멸구 저항성과 가장 밀접하게 연관된 $OPE16_{700}$을 선발하였다. 4. SSR marker 및 OPE16과 65 DH 계통의 벼멸구 저항성과의 연관분석을 실시한 결과 OPE16이 벼멸구 저항성 유전자와 4.6cM 거리로 가장 밀접하게 연관되어 있는 것으로 나타났다.

Induction by Carvone of the Polychlorinated Biphenyl (PCB)-Degradative Pathway in Alcaligenes eutrophus H850 and Its Molecular Monitoring

  • Park, Young-In;So, Jae-Seong;Koh, Sung-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권6호
    • /
    • pp.804-810
    • /
    • 1999
  • There is a possibility that carvone, a monoterpene from spearmint (Mentha spicata), could induce the bph degradative pathway and genes in Alcaligenes eutrophus H850, which is a known Gram-negative PCB degrader with a broad substrate specificity that was thoroughly investigated with Arthrobacter sp. BIB, a Gram-positive PCB degrader. The strains BIB and H850 were unable to utilize and grow on the plant terpene [(R)-(-)-carvone] (50ppm) to be recognized as a sole carbon source. Nevertheless, the carvone did induce 2,3-dihydroxybiphenyl 1,2-dioxygenase (encoded by bphC) in the strain B lB, as observed by a resting cell assay that monitors accumulation of a yellow meta ring fission product from 4,4'-dichlorobiphenyl (DCBp). The monoterpene, however, did not appear to induce the meta cleavage pathway in the strain H850. Instead, an assumption was made that the strain might be using an alternative pathway, probably the ortho-cleavage pathway. A reverse transcription (RT)-PCR system, utilizing primers designed from a conserved region of the bphC gene of Arthrobacter sp. M5, was employed to verify the occurrence of the alternative pathway. A successful amplification (182bp) of mRNA transcribed from the N-terminal region of the bphC gene was accomplished in H850 cells induced by carvone (50ppm) as well as in biphenyl-growth cells. It is, therefore, likely that H850 possesses a specific PCB degradation pathway and hence a different substrate specificity compared with B1B. This study will contribute to an elucidation of the dynamic aspects of PCB bioremediation in terms of roles played by PCB degraders and plant terpenes as natural inducer substrates that are ubiquitous and environmentally compatible.

  • PDF

벼멸구 저항성 유전자에 대한 국내 벼멸구의 생물적 반응 연구 (Biological Response of Resistant Genes to Korean Brown Planthopper, Nilaparvata lugens Stål)

  • 최낙중;김광호;백채훈;이봉춘
    • 생명과학회지
    • /
    • 제29권2호
    • /
    • pp.202-208
    • /
    • 2019
  • 벼멸구는 국내로 비래하여 벼에 가장 큰 피해를 주는 해충 중 하나이고, 매년 열대 및 아열대 지역에서 저기압 기류를 타고 침입한다. 따라서 벼멸구의 효과적인 방제를 위해 저항성 정도를 모니터링 하는 것은 매우 중요한 일이다. 국내 비래한 벼멸구를 지역별로 구분하여 벼멸구 저항성 유전자(Bph1, Bph2, Bph18)에 각각 접종하여 사육실의 동일한 환경조건($25{\pm}2^{\circ}C$, $60{\pm}5%\;RH$, L:D=16:8)에서 벼멸구의 감로 배설, 발육기간 및 산자수 등을 조사하였다. 얻어진 정보는 Jackknife 방법을 이용하여 생명표를 작성하였다. 벼멸구 저항성 유전자 중 Bph1 유전자에서 감로 분비량이 가장 적었고, 약충 발육기간은 $13.7{\pm}0.10$일(Bph2, 남해, 2015)에서 $18.5{\pm}1.06$일(Bph2, 사천, 2016)로 나타났다. 산란기간과 암컷수명은 감수성, Bph2 및 Bph18 (1980s 예외)에서 긴 것으로 조사되었고, 산자수도 2개의 동일한 저항성 유전자에서 많이 관찰되었다. 순증가율($R_0$)은 Bph2 유전자에서 지역에 관계없이 높은 것으로 나타났는데 내적자연증가율($r_m$)은 저항성 유전자에 대해 지역별로 차이를 보였다. 생명표는 벼멸구가 매년 다른 지역에서 비래하거나 그 생물적 특징이 다르다는 것을 보여준다.

Fine Mapping of the Rice Bph1 Gene, which Confers Resistance to the Brown Planthopper (Nilaparvata lugens Stal), and Development of STS Markers for Marker-assisted Selection

  • Cha, Young-Soon;Ji, Hyeonso;Yun, Doh-Won;Ahn, Byoung-Ohg;Lee, Myung Chul;Suh, Seok-Cheol;Lee, Chun Seok;Ahn, Eok Keun;Jeon, Yong-Hee;Jin, Il-Doo;Sohn, Jae-Keun;Koh, Hee-Jong;Eun, Moo-Young
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.146-151
    • /
    • 2008
  • The brown planthopper (BPH) is a major insect pest in rice, and damages these plants by sucking phloem-sap and transmitting viral diseases. Many BPH resistance genes have been identified in indica varieties and wild rice accessions, but none has yet been cloned. In the present study we report fine mapping of the region containing the Bph1 locus, which enabled us to perform marker-aided selection (MAS). We used 273 F8 recombinant inbred lines (RILs) derived from a cross between Cheongcheongbyeo, an indica type variety harboring Bph1 from Mudgo, and Hwayeongbyeo, a BPH susceptible japonica variety. By random amplification of polymorphic DNA (RAPD) analysis using 656 random 10-mer primers, three RAPD markers (OPH09, OPA10 and OPA15) linked to Bph1 were identified and converted to SCAR (sequence characterized amplified region) markers. These markers were found to be contained in two BAC clones derived from chromosome 12: OPH09 on OSJNBa0011B18, and both OPA10 and OPA15 on OSJNBa0040E10. By sequence analysis of ten additional BAC clones evenly distributed between OSJNBa0011B18 and OSJNBa0040E10, we developed 15 STS markers. Of these, pBPH4 and pBPH14 flanked Bph1 at distances of 0.2 cM and 0.8 cM, respectively. The STS markers pBPH9, pBPH19, pBPH20, and pBPH21 co-segregated with Bph1. These markers were shown to be very useful for marker-assisted selection (MAS) in breeding populations of 32 F6 RILs from a cross between Andabyeo and IR71190, and 32 F5 RILs from a cross between Andabyeo and Suwon452.