• Title/Summary/Keyword: boundary transition section

Search Result 11, Processing Time 0.022 seconds

The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test

  • Hu, Peng;Li, Yongle;Huang, Guoqing;Kang, Rui;Liao, Haili
    • Wind and Structures
    • /
    • v.20 no.1
    • /
    • pp.15-36
    • /
    • 2015
  • Characterization of wind flows over a complex terrain, especially mountain-gorge terrain (referred to as the very complex terrain with rolling mountains and deep narrow gorges), is an important issue for design and operation of long-span bridges constructed in this area. In both wind tunnel testing and numerical simulation, a transition section is often used to connect the wind tunnel floor or computational domain bottom and the boundary top of the terrain model in order to generate a smooth flow transition over the edge of the terrain model. Although the transition section plays an important role in simulation of wind field over complex terrain, an appropriate shape needs investigation. In this study, two principles for selecting an appropriate shape of boundary transition section were proposed, and a theoretical curve serving for the mountain-gorge terrain model was derived based on potential flow theory around a circular cylinder. Then a two-dimensional (2-D) simulation was used to compare the flow transition performance between the proposed curved transition section and the traditional ramp transition section in a wind tunnel. Furthermore, the wind velocity field induced by the curved transition section with an equivalent slope of $30^{\circ}$ was investigated in detail, and a parameter called the 'velocity stability factor' was defined; an analytical model for predicting the velocity stability factor was also proposed. The results show that the proposed curved transition section has a better flow transition performance compared with the traditional ramp transition section. The proposed analytical model can also adequately predict the velocity stability factor of the wind field.

Shallow Gas Exploration in the Pohang Basin Transition Zone (포항분지 전이대에서 천부가스 탐사)

  • Lee, Donghoon;Kim, Byoung-Yeop;Kim, Ji-Soo;Jang, Seonghyung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2022
  • For surveying shallow gas reservoirs in the Pohang basin, we proposed a seismic exploration method applicable to the transition zone in which land and marine areas are connected. We designed the seismic acquisition geometry considering both environments. We installed land nodal receivers on the ground and employed vibroseis and airgun sources in both land and marine areas. For seismic exploration in the transition zone, specific acquisition and processing techniques are required to ensure precise matching of reflectors at the boundary between the onshore and offshore regions. To enhance the continuity of reflection events on the seismic section, we performed amplitude and phase corrections with respect to the source types and applied a static correction. Following these processing steps, we obtained a seismic section showing connected reflectors around the boundary in the transition zone. We anticipate that our proposed seismic exploration method can also be used for fault detection in the transition zone.

A study on the hydrofoil section shapes in consideration of viscous effects for marine propeller blades (점성의 영향을 고려한 선박 추진기용 익형의 단면 형상에 관한 연구)

  • 김시영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.46-56
    • /
    • 1988
  • The author has presented a new approach to design hydrofoil section shapes in consideration of viscous for marine propeller blades. In suction sides of propeller blades, the pressure distribution on hydrofoil sections in non-cavitating flow should be examined before the study of cavitation characteristics. Generally, the calculation results for hydrofoil conformal mapping method by which neglect viscous effects do not agree with experimental ones. Moreover, another papers reported that laminar separation bubble and transition played an important role on the cavitation inception. From these considerations, it is very important to study the viscous effects of the hydrofoil sections, especially the mechanism separation bubble and the apparent thickness of hydrofoil section. Therefore, the new design method of hydrofoil sections in consideration of viscous effects in comparison to the airfoil section should be studied. In designing the new hydrofoil section shapes, based on Eppler theory, the author tried to give the peak negative pressure in leading edge region for NACA airfoil in consideration of viscous effects without turbulent boundary layer separation as much as possible. The design method was verified from the fact that the boundary characteristics was improved and the lifts of new hydrofoils were slightly in creased in comparison to these of NACA 16-012 symmetrical, NACA 4412 non-symmetrical airfoils.

  • PDF

Unsteady Flow Analysis through the Subcritical-Supercritical Transition Region (개수로에서의 상류-사류 천이영역에 대한 부정류 해석)

  • 한건연;박재홍;이종태
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 1994
  • Numerical instability of Preissmann scheme is studied for unsteady flow analysis in a natural river. The solution strategies to overcome the instability problems are presented in this paper. The main causes of numerical instability of Preissmann scheme are transition flow, abrupt change in cross section, in-appropriate roughness coefficients, time step and distance step, rapidly rising hydrograph, dry bed and so on. Transition flow model is proposed for the analysis of the transition flow which changes from subcritical to supercritical or conversely. The subcritical and supercritical reaches are groped in the channel, then appropriate boundary conditions are introduced for each reach. The transition flow analysis produces stable solutions in calculating through the various transition conditions. Verification with an actual river system is necessary in the future.

  • PDF

Train-Structure Dynamic Interaction Analysis of The Bridge Transition Considering Track Irregularity (궤도틀림을 고려한 교대접속부의 열차상호동적거동해석)

  • Choi, Chan-Yong;Kim, Hun-Ki;Chung, Keun-Young;Yang, Sang-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.9
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, track dynamic interaction characteristics caused by the vehicle running through transitional section such as bridge abutments were studied using the finite element analysis program. The geometric condition of track was generated by trigonometric function and allowable maximum track irregularity is determined by KORAIL track maintenance criteria. The sub-infrastructure under rail fastener system was modelled by 3D solid elements. To reduce computational cost only half track line is numerically considered and the roller boundary condition was applied to each side of model. In this study, the vehicle-track dynamic interaction analysis was carried out for standard Korean transition section of concrete track and the dynamic behaviors were investigated. The dynamic characteristics considered are wheel load variation, vertical acceleration at body, and maximum Mises stress at each part of transitional section.

NUMERICAL SIMULATION OF FLOW PAST A SQUARE CYLINDER SUBMERGED UNDER THE FREE SURFACE (자유수면 아래 정방형 실린더 후류 유동에 관한 수치해석적 연구)

  • Ahn, Hyungsu;Yang, Kyung-Soo;Park, Doohyun
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.51-57
    • /
    • 2015
  • In the present study, two-dimensional numerical investigation of flow past a square cylinder beneath the free surface has been performed to identify the effects of presence of the free surface. An immersed boundary method was adopted for implementation of the cylinder cross-section in a Cartesian grid system. Also, a level-set method was used to capture the interface of two fluids. To prevent transition to three-dimensional flow, Reynolds number chosen for this simulation was 150. The cases for Froude number 0.2 and gap ratio(h/D) between 0.25 and 5.00 were examined. At the specific Reynolds number, we study the effects of gap ratio on flow characteristics around a square cylinder by computing flow fields, force coefficients and Strouhal number.

An Experimental Study on the Transport of Turbulent Energy in the Transitional Boundary Layer (천이영역에서 난류에너지의 이동에 관한 실험적 연구)

  • 임효재;백성구;이원근
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.131-138
    • /
    • 2003
  • This paper considered the structural mechanism of transitional boundary layer by the experimental approach. In order to measure the turbulence quantity in the boundary layer, we made a wind tunnel with 400${\times}$190${\times}$2500 mm test section and a flat plate with well fabricated leading edge. Hot wire anemometer was used for acquiring the continuous turbulence signal which is processed by special software. The results of experiment show that the region where turbulence spot is dominant moves from near wall to overall layer and thus the anisotropy of velocity fluctuation shows so large value. Also the turbulence energy originally contained in low frequency band comes up to the high frequency band. Finally the turbulence model needs minimum two length scales to consider the pre-transition region.

Effects of Uniform and Turbulent Inflow Conditions on Wake Topology and Vortex Growth Behind a Ramp (균일 및 난류 입구조건이 램프 후류 형상 및 성장에 미치는 영향)

  • Lokesh Kalyan Gutti;Mustafa Z. Yousif;Hee-Chang Lim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.24-33
    • /
    • 2023
  • This work is to observe the wake flow generated behind a ramp. We have conducted a large eddy simulation with two ramp models having different heights with two different inflow conditions. Reynolds number based on the height of the large ramp (LR) and small ramp (SR) are Reh = 2.8×104 and 1.4×104 respectively. The wake flow visualization shows the formation of streamwise counter-rotating vortices pairs at the downstream of the obstacle. These primary vortices are stretched and lifted up when moving downstream. In order to observe the effect of the inflow condition on the wake transition, two different inlet flow conditions are given on the inlet section as an inlet boundary condition. Induced counter-rotating vortices pairs due to sharp-edged triangular ramp obstacles are developed and propagated downstream. In the result, the large ramp shows a more complicated wake structure of the boundary layer than the small ramp.

P-Waves and T-Wave Detection Algorithm in the ECG Signals Using Step-by-Step Baseline Alignment (단계별 기저선 정렬을 이용한 ECG 신호에서 P파와 T파 검출 알고리즘)

  • Kim, Jeong-Hong;Lee, SeungMin;Park, Kil-Houm
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.1034-1042
    • /
    • 2016
  • The detection of P-waves and T-wave in the electrocardiogram signal analysis is an important issue. But the accuracy of the boundary detection algorithm is an insufficient level in the change of slow transition in the signal compared to the QRS complex. This study proposes an algorithm to detect P-wave and T-wave sequentially after determining local baseline using QRS complex. First, we detected the peak points based on local baseline and determined the onset and offset through the calculation of the area of the section. After modifying the baseline using detected waveform, we detected the other waveform in the same way and separated the P-wave and the T-wave based on the location. We used the PhysioNet QT database to evaluate the performances of the algorithm, and calculate the mean and the standard deviations. The experiment results show that standard deviations are under the tolerances accepted by expert physicians, and outperform the results obtained by the other algorithms.

The fabrication of $MgB_2$/SUS Tapes by PIT Process

  • 송규정;이남진;장현만;하홍수;하동우
    • Progress in Superconductivity
    • /
    • v.3 no.2
    • /
    • pp.213-217
    • /
    • 2002
  • We have fabricated successfully single-filament composite $MgB_2$/SUS tapes, as an ultrarobust conductor type. The fabrication of the $MgB_2$/SUS tapes was performed by power-in-tube (PIT) process such as swaging and cold rolling. The critical transition temperatures $T_{c}$~38.5 K and ~36 K were observed for the sintered and the nonsintered $MgB_2$/SUS tapes, respectively In addition, the isothermal magnetization M(H) of the sintered $MgB_2$/SUS tapes was measured at temperatures T (between 5 and 50 K) in fields up to 6 T, employing a PPMS-9 (Quantum Design). The persistent current density (J$T_{P}$) values were obtained from the M(H) data, using Bean model, fur the sintered $MgB_2$/SUS tapes. The estimated values were higher than ~ 6$\times$ $10^{5}$ $A/\textrm{cm}^2$ at T = 5 K, with H : 0 G. We also investigated the cross section of the sintered tapes, by using SEM and EDX. An evidence of weak reaction on boundary between $MgB_2$ and SUS tube is found in the SEM and EDX.X.X.X.

  • PDF