• Title/Summary/Keyword: boundary object

Search Result 554, Processing Time 0.022 seconds

Video object segmentation using a novel object boundary linking (새로운 객체 외곽선 연결 방법을 사용한 비디오 객체 분할)

  • Lee Ho-Suk
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.255-274
    • /
    • 2006
  • Moving object boundary is very important for the accurate segmentation of moving object. We extract the moving object boundary from the moving object edge. But the object boundary shows broken boundaries so we develop a novel boundary linking algorithm to link the broken boundaries. The boundary linking algorithm forms a quadrant around the terminating pixel in the broken boundaries and searches for other terminating pixels to link in concentric circles clockwise within a search radius in the forward direction. The boundary linking algorithm guarantees the shortest distance linking. We register the background from the image sequence using the stationary background filtering. We construct two object masks, one object mask from the boundary linking and the other object mask from the initial moving object, and use these two complementary object masks to segment the moving objects. The main contribution of the proposed algorithms is the development of the novel object boundary linking algorithm for the accurate segmentation. We achieve the accurate segmentation of moving object, the segmentation of multiple moving objects, the segmentation of the object which has a hole within the object, the segmentation of thin objects, and the segmentation of moving objects in the complex background using the novel object boundary linking and the background automatically. We experiment the algorithms using standard MPEG-4 test video sequences and real video sequences of indoor and outdoor environments. The proposed algorithms are efficient and can process 70.20 QCIF frames per second and 19.7 CIF frames per second on the average on a Pentium-IV 3.4GHz personal computer for real-time object-based processing.

Adaptive Thinning Algorithm for External Boundary Extraction

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.75-80
    • /
    • 2016
  • The process of extracting external boundary of an object is a very important process for recognizing an object in the image. The proposed extraction method consists of two processes: External Boundary Extraction and Thinning. In the first step, external boundary extraction process separates the region representing the object in the input image. Then, only the pixels adjacent to the background are selected among the pixels constituting the object to construct an outline of the object. The second step, thinning process, simplifies the outline of an object by eliminating unnecessary pixels by examining positions and interconnection relations between the pixels constituting the outline of the object obtained in the previous extraction process. As a result, the simplified external boundary of object results in a higher recognition rate in the next step, the object recognition process.

Fuzzy-based gaseous object segmentation on image plane (Fuzzy를 이용한 영상에서의 기체분리)

  • Kim, Won-Ha;Park, Min-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.169-171
    • /
    • 2001
  • Unlike rigid objects, the edge intensity of a gaseous object is various along the object boundary (edge intensities of some pixels on a gaseous object boundary are weaker than those of small rigid objects or noise itself). Therefore, the conventional edge detectors may not adequately detect boundary-like edge pixels for gaseous objects. In this paper A new methodology for segmenting gaseous object images is introduced. Proposed method consists of fuzzy-based boundary detector applicable to gaseous as well as rigid objects and concave region filling to recover object regions.

  • PDF

Moving Object Segmentation using Space-oriented Object Boundary Linking and Background Registration (공간기반 객체 외곽선 연결과 배경 저장을 사용한 움직이는 객체 분할)

  • Lee Ho Suk
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.2
    • /
    • pp.128-139
    • /
    • 2005
  • Moving object boundary is very important for moving object segmentation. But the moving object boundary shows broken boundary We invent a novel space-oriented boundary linking algorithm to link the broken boundary The boundary linking algorithm forms a quadrant around the terminating pixel in the broken boundary and searches forward other terminating pixel to link within a radius. The boundary linking algorithm guarantees shortest distance linking. We also register the background from image sequence. We construct two object masks, one from the result of boundary linking and the other from the registered background, and use these two complementary object masks together for moving object segmentation. We also suppress the moving cast shadow using Roberts gradient operator. The major advantages of the proposed algorithms are more accurate moving object segmentation and the segmentation of the object which has holes in its region using these two object masks. We experiment the algorithms using the standard MPEG-4 test sequences and real video sequence. The proposed algorithms are very efficient and can process QCIF image more than 48 fps and CIF image more than 19 fps using a 2.0GHz Pentium-4 computer.

A Study on Tracking Algorithm for Moving Object Using Partial Boundary Line Information (부분 외곽선 정보를 이용한 이동물체의 추척 알고리즘)

  • Jo, Yeong-Seok;Lee, Ju-Sin
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.539-548
    • /
    • 2001
  • In this paper, we propose that fast tracking algorithm for moving object is separated from background, using partial boundary line information. After detecting boundary line from input image, we track moving object by using the algorithm which takes boundary line information as feature of moving object. we extract moving vector on the imput image which has environmental variation, using high-performance BMA, and we extract moving object on the basis of moving vector. Next, we extract boundary line on the moving object as an initial feature-vector generating step for the moving object. Among those boundary lines, we consider a part of the boundary line in every direction as feature vector. And then, as a step for the moving object, we extract moving vector from feature vector generated under the information of the boundary line of the moving object on the previous frame, and we perform tracking moving object from the current frame. As a result, we show that the proposed algorithm using feature vector generated by each directional boundary line is simple tracking operation cost compared with the previous active contour tracking algorithm that changes processing time by boundary line size of moving object. The simulation for proposed algorithm shows that BMA operation is reduced about 39% in real image and tracking error is less than 2 pixel when the size of feature vector is [$10{\times}5$] using the information of each direction boundary line. Also the proposed algorithm just needs 200 times of search operation bout processing cost is varies by the size of boundary line on the previous algorithm.

  • PDF

A Semantic Video Object Tracking Algorithm Using Contour Refinement (윤곽선 재조정을 통한 의미 있는 객체 추적 알고리즘)

  • Lim, Jung-Eun;Yi, Jae-Youn;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.6
    • /
    • pp.1-8
    • /
    • 2000
  • This paper describes an algorithm for semantic video object tracking using semi automatic method. In the semi automatic method, a user specifies an object of interest at the first frame and then the specified object is to be tracked in the remaining frames. The proposed algorithm consists of three steps: object boundary projection, uncertain area extraction, and boundary refinement. The object boundary is projected from the previous frame to the current frame using the motion estimation. And uncertain areas are extracted via two modules: Me error-test and color similarity test. Then, from extracted uncertain areas, the exact object boundary is obtained by boundary refinement. The simulation results show that the proposed video object extraction method provides efficient tracking results for various video sequences compared to the previous methods.

  • PDF

An Improved Snake Algorithm Using Local Curvature (부분 곡률을 이용한 개선된 스네이크 알고리즘)

  • Lee, Jung-Ho;Choi, Wan-Sok;Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.501-506
    • /
    • 2008
  • The classical snake algorithm has a problem in detecting the boundary of an object with deep concavities. While the GVF method can successfully detect boundary concavities, it consumes a lot of time computing the energy map. In this paper, we propose an algorithm to reduce the computation time and improve performance in detecting the boundary of an object with high concavity. We define the degree of complexity of object boundary as the local curvature. If the value of the local curvature is greater than a threshold value, new snake points are added. Simulation results on several different test images show that our method performs well in detecting object boundary and requires less computation time.

Active Contour Model for Boundary Detection of Multiple Objects (복수 객체의 윤곽 검출 방법에 대한 능동윤곽모델)

  • Jang, Jong-Whan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.375-380
    • /
    • 2010
  • Most of previous algorithms of object boundary extraction have been studied for extracting the boundary of single object. However, multiple objects are much common in the real image. The proposed algorithm of extracting the boundary of each of multiple objects has two steps. In the first step, we propose the fast method using the outer and inner products; the initial contour including multiple objects is split and connected and each of new contours includes only one object. In the second step, an improved active contour model is studied to extract the boundary of each object included each of contours. Experimental results with various test images have shown that our algorithm produces much better results than the previous algorithms.

Automatic Object Segmentation and Background Composition for Interactive Video Communications over Mobile Phones

  • Kim, Daehee;Oh, Jahwan;Jeon, Jieun;Lee, Junghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • This paper proposes an automatic object segmentation and background composition method for video communication over consumer mobile phones. The object regions were extracted based on the motion and color variance of the first two frames. To combine the motion and variance information, the Euclidean distance between the motion boundary pixel and the neighboring color variance edge pixels was calculated, and the nearest edge pixel was labeled to the object boundary. The labeling results were refined using the morphology for a more accurate and natural-looking boundary. The grow-cut segmentation algorithm begins in the expanded label map, where the inner and outer boundary belongs to the foreground and background, respectively. The segmented object region and a new background image stored a priori in the mobile phone was then composed. In the background composition process, the background motion was measured using the optical-flow, and the final result was synthesized by accurately locating the object region according to the motion information. This study can be considered an extended, improved version of the existing background composition algorithm by considering motion information in a video. The proposed segmentation algorithm reduces the computational complexity significantly by choosing the minimum resolution at each segmentation step. The experimental results showed that the proposed algorithm can generate a fast, accurate and natural-looking background composition.

  • PDF

A Study on Effective Moving Object Segmentation and Fast Tracking Algorithm (효율적인 이동물체 분할과 고속 추적 알고리즘에 관한 연구)

  • Jo, Yeong-Seok;Lee, Ju-Sin
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.359-368
    • /
    • 2002
  • In this paper, we propose effective boundary line extraction algorithm for moving objects by matching error image and moving vectors, and fast tracking algorithm for moving object by partial boundary lines. We extracted boundary line for moving object by generating seeds with probability distribution function based on Watershed algorithm, and by extracting boundary line for moving objects through extending seeds, and then by using moving vectors. We processed tracking algorithm for moving object by using a part of boundary lines as features. We set up a part of every-direction boundary line for moving object as the initial feature vectors for moving objects. Then, we tracked moving object within current frames by using feature vector for the previous frames. As the result of the simulation for tracking moving object on the real images, we found that tracking processing of the proposed algorithm was simple due to tracking boundary line only for moving object as a feature, in contrast to the traditional tracking algorithm for active contour line that have varying processing cost with the length of boundary line. The operations was reduced about 39% as contrasted with the full search BMA. Tracking error was less than 4 pixel when the feature vector was $(15\times{5)}$ through the information of every-direction boundary line. The proposed algorithm just needed 200 times of search operation.