• Title/Summary/Keyword: boundary damping

검색결과 297건 처리시간 0.026초

The controllable fluid dash pot damper performance

  • Samali, Bijan;Widjaja, Joko;Reizes, John
    • Smart Structures and Systems
    • /
    • 제2권3호
    • /
    • pp.209-224
    • /
    • 2006
  • The use of smart dampers to optimally control the response of structures is on the increase. To maximize the potential use of such damper systems, their accurate modeling and assessment of their performance is of vital interest. In this study, the performance of a controllable fluid dashpot damper, in terms of damper forces, damper dynamic range and damping force hysteretic loops, respectively, is studied mathematically. The study employs a damper Bingham-Maxwell (BingMax) model whose mathematical formulation is developed using a Fourier series technique. The technique treats this one-dimensional Navier-Stokes's momentum equation as a linear superposition of initial-boundary value problems (IBVPs): boundary conditions, viscous term, constant Direct Current (DC) induced fluid plug and fluid inertial term. To hold the formulation applicable, the DC current level to the damper is supplied as discrete constants. The formulation and subsequent simulation are validated with experimental results of a commercially available magneto rheological (MR) dashpot damper (Lord model No's RD-1005-3) subjected to a sinusoidal stroke motion using a 'SCHENK' material testing machine in the Materials Laboratory at the University of Technology, Sydney.

동요(動搖)하는 2차원몰수체(次元沒水體)에 작용(作用)하는 선형(線形) 및 비선형(非線形) 동유체력(動流體力)에 미치는 전진속도(前進速度)의 영향(影響) (Effects of Forward Speed on the Linear and Nonlinear Hydrodynamic Forces Acting on Advancing Submerged Cylinders in Oscillation)

  • 황종흘;김용직;이승수
    • 대한조선학회지
    • /
    • 제24권2호
    • /
    • pp.47-54
    • /
    • 1987
  • Linear and nonlinear hydrodynamic force, which acts on submerged circular and eilliptic cylinders in oscillations as well as in advancing motion, are investigated as an initial-boundary value problem using a numerical method, which makes use of the source distribution on the body surface and the spectral method for treating the free surface waves. In the numerical code developed here, the boundary condition at the body surface is linearized. Using the numerical code so attained, nonlinear effects for different forward speeds and of the large-amplitude motion are computed. One of the major findings is that, when the forward speed is large, the added mass has its minimum and the damping force change rapidly around the frequency corresponding to the speed-frequency parameter, $\tau$=0.25, Compared to the result of Grue's [10], who used linear theory to get abrupt changes in values of the added mass and the damping force at the frequency corresponding to $\tau$=0.25, the present study, which takes nonlinear effects into account, shows much smoother variations near the frequency.

  • PDF

Assessing 3D seismic damage performance of a CFR dam considering various reservoir heights

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.221-234
    • /
    • 2019
  • Today, many important concrete face rockfill dams (CFRDs) have been built on the world, and some of these important structures are located on the strong seismic regions. In this reason, examination and monitoring of these water construction's seismic behaviour is very important for the safety and future of these dams. In this study, the nonlinear seismic behaviour of Ilısu CFR dam which was built in Turkey in 2017, is investigated for various reservoir water heights taking into account 1995 Kobe near-fault and far-fault ground motions. Three dimensional (3D) finite difference model of the dam is created using the FLAC3D software that is based on the finite difference method. The most suitable mesh range for the 3D model is chosen to achieve the realistic numerical results. Mohr-Coulomb nonlinear material model is used for the rockfill materials and foundation in the seismic analyses. Moreover, Drucker-Prager nonlinear material model is considered for the concrete slab to represent the nonlinearity of the concrete. The dam body, foundation and concrete slab constantly interact during the lifetime of the CFRDs. Therefore, the special interface elements are defined between the dam body-concrete slab and dam body-foundation due to represent the interaction condition in the 3D model. Free field boundary condition that was used rarely for the nonlinear seismic analyses, is considered for the lateral boundaries of the model. In addition, quiet artificial boundary condition that is special boundary condition for the rigid foundation in the earthquake analyses, is used for the bottom of the foundation. The hysteric damping coefficients are separately calculated for all of the materials. These special damping values is defined to the FLAC3D software using the special fish functions to capture the effects of the variation of the modulus and damping ratio with the dynamic shear-strain magnitude. Total 4 different reservoir water heights are taken into account in the seismic analyses. These water heights are empty reservoir, 50 m, 100 m and 130 m (full reservoir), respectively. In the nonlinear seismic analyses, near-fault and far-fault ground motions of 1995 Kobe earthquake are used. According to the numerical analyses, horizontal displacements, vertical displacements and principal stresses for 4 various reservoir water heights are evaluated in detail. Moreover, these results are compared for the near-fault and far-faults earthquakes. The nonlinear seismic analysis results indicate that as the reservoir height increases, the nonlinear seismic behaviour of the dam clearly changes. Each water height has different seismic effects on the earthquake behaviour of Ilısu CFR dam. In addition, it is obviously seen that near-fault earthquakes and far field earthquakes create different nonlinear seismic damages on the nonlinear earthquake behaviour of the dam.

동적 유한요소해석에서의 반무한 경계조건의 실행 (Implementation of Semi-infinite Boundary Condition for Dynamic Finite Element Analysis)

  • 최창호;정하익
    • 한국지반공학회논문집
    • /
    • 제22권9호
    • /
    • pp.37-43
    • /
    • 2006
  • 지반구조물의 동적해석은 모델의 영역이 커짐에 따라 에너지가 감소하는 현상을 표현할 수 있는 방법을 필요로 한다. 이러한 현상은 흔히 방사 감쇠(radiation damping) 또는 기하학적 감쇠(geometric attenuation)로 알려져 있으며, 탄성에너지가 점성 또는 이력현상에 의해 감소되는 재료 감쇠현상과는 구별된다. 따라서 수치해석으로 지반구조물의 동적거동을 해석할 경우 모델의 영역 구축은 특별한 고려를 필요로 한다. 인공적인 경계조건은 유한요소내의 지반상태를 무한상태로 변형시킬 수 있어야 하며, 경계에 도달하는 응력 파동을 모델내로 반사시키지 않고 흡수 할 수 있어야 한다. 본 논문에서는 간단한 점 탄성 반무한 불연속 요소를 이용하여 지반구조물의 동적해석을 수행할 경우 에너지를 투과하는 경계조건을 수립하는 방법을 보여준다. 반무한 요소의 실행은 OpenSees라는 유한요소 해석프로그램을 이용하여 수행되었으며, 예를 통하여 불연속 요소가 경계에 도달하는 응력 파동을 충분히 흡수하여 유한요소 모델을 반무한 상태로 전환 시킬 수 있다는 것을 보여준다. 본 논문에서 제시된 방법은 간단하게 실용적으로 사용할 수 있는 반무한 경계조건이지만, 입사각이 매우 예리할 경우는 에너지의 흡수정도가 충분치 않은 것으로 알려져 있다.

댐의 시간영역 지진응답 해석을 위한 호소의 집중변수모델 (Lumped Parameter Model of Transmitting Boundary for the Time Domain Analysis of Dam-Reservoir Systems)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.143-150
    • /
    • 2000
  • A physical lumped parameter model is proposed for the time domain analysis of dam-reservoir system. The exact solution of transmitting boundary is derived for a semi-infinite 2-D reservoir of constant depth. The characteristics of the solution are examined in both frequency and the domains. Mass and damping coefficient are obtained from asymptotic behavior of the frequency domain solution. Further refinement to the lumped model is made by approximating the kernel function of the convolution integral in the exact solution. Finally a new physical lumped parameter model is proposed that consists of two masses, a spring and two dampers for each mode. It is demonstrated that new lumped parameter model of transmitting boundary can give excellent results.

  • PDF

Comparison of Turbulence Models in Shock-Wave/ Boundary- Layer Interaction

  • Kim, Sang-Dug;Kwon, Chang-Oh;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권1호
    • /
    • pp.153-166
    • /
    • 2004
  • This paper presents a comparative study of a fully coupled, upwind, compressible Navier-Stokes code with three two-equation models and the Baldwin-Lomax algebraic model in predicting transonic/supersonic flow. The k-$\varepsilon$ turbulence model of Abe performed well in predicting the pressure distributions and the velocity profiles near the flow separation over the axisymmetric bump, even though there were some discrepancies with the experimental data in the shear-stress distributions. Additionally, it is noted that this model has y$\^$*/ in damping functions instead of y$\^$+/. The turbulence model of Abe and Wilcox showed better agreements in skin friction coefficient distribution with the experimental data than the other models did for a supersonic compression ramp problem. Wilcox's model seems to be more reliable than the other models in terms of numerical stability. The two-equation models revealed that the redevelopment of the boundary layer was somewhat slow downstream of the reattachment portion.

소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석 (The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer)

  • 신구균;서영수;강명환;전재진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.568-574
    • /
    • 2012
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, material and damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction.

  • PDF

수치 파동 수조를 이용한 부유체의 문풀 (Moon Pool) 유동해석 (Flow Analysis of Two-Dimensional Floating Body with Moon Pool Using a Numerical Wave Tank)

  • 구원철;이경록
    • 대한조선학회논문집
    • /
    • 제48권2호
    • /
    • pp.107-112
    • /
    • 2011
  • The aim of this study is to analyze the hydrodynamic properties of a 2D floating body with moon pool using a 2D fully nonlinear Numerical Wave Tank(NWT). This NWT was developed based on the Boundary Element Method(BEM) with potential theory and fully nonlinear free surface boundary conditions. Free surface elevations in the moon pool were calculated in the time domain for various frequencies of forced body motions. The added-mass and damping coefficients of the heaving body were also obtained. The present numerical results were compared with the analytic and experimental results and their accuracy was verified.

Fe-20Mn-12Cr-1Cu 제진합금의 고온가스 질화처리 (High Temperature Gas Nitriding of Fe-20Mn-12Cr-1Cu Damping Alloy)

  • 성지현;김영희;성장현;강창룡
    • 열처리공학회지
    • /
    • 제26권3호
    • /
    • pp.105-112
    • /
    • 2013
  • The microstructural changes of Fe-20Mn-12Cr-1Cu alloy have been studied during high temperature gas nitriding (HTGN) at the range of $1000^{\circ}C{\sim}1150^{\circ}C$ in an atmosphere of nitrogen gas. The mixed microstructure of austenite and ${\varepsilon}$-martensite of as-received alloy was changed to austenite single phase after HTGN treatment at the nitrogen-permeated surface layer, however the interior region that was not affected nitrogen permeation remained the structure of austenite and ${\varepsilon}$-martensite. With raising the HTGN treatment temperature, the concentration and permeation depth of nitrogen, which is known as the austenite stabilizing element, were increased. Accordingly, the depth of austenite single phase region was increased. The outmost surface of HTGN treated alloy at $1000^{\circ}C$ appeared Cr nitride. And this was in good agreement with the thermodynamically calculated phase diagram. The grain growth was delayed after HTGN treatment temperature ranges of $1000^{\circ}C{\sim}1100^{\circ}C$ due to the grain boundary precipitates. For the HTGN treatment temperature of $1150^{\circ}C$, the fine grain region was shown at the near surface due to the grain boundary precipitates, however, owing to the depletion of grain boundary precipitates, coarse grain was appeared at the depth far from the surface. This depletion may come from the strong affinity between nitrogen and substitutional element of Al and Ti leading the diffusion of these elements from interior to surface. Because of the nitrogen dissolution at the nitrogen-permeated surface layer by HTGN treatment, the surface hardness was increased above 150 Hv compared to the interior region that was consisted with the mixed microstructure of austenite and ${\varepsilon}$-martensite.

Higher-order Spectral Method for Regular and Irregular Wave Simulations

  • Oh, Seunghoon;Jung, Jae-Hwan;Cho, Seok-Kyu
    • 한국해양공학회지
    • /
    • 제34권6호
    • /
    • pp.406-418
    • /
    • 2020
  • In this study, a nonlinear wave simulation code is developed using a higher-order spectral (HOS) method. The HOS method is very efficient because it can determine the solution of the boundary value problem using fast Fourier transform (FFT) without matrix operation. Based on the HOS order, the vertical velocity of the free surface boundary was estimated and applied to the nonlinear free surface boundary condition. Time integration was carried out using the fourth order Runge-Kutta method, which is known to be stable for nonlinear free-surface problems. Numerical stability against the aliasing effect was guaranteed by using the zero-padding method. In addition to simulating the initial wave field distribution, a nonlinear adjusted region for wave generation and a damping region for wave absorption were introduced for wave generation simulation. To validate the developed simulation code, the adjusted simulation was carried out and its results were compared to the eighth order Stokes theory. Long-time simulations were carried out on the irregular wave field distribution, and nonlinear wave propagation characteristics were observed from the results of the simulations. Nonlinear adjusted and damping regions were introduced to implement a numerical wave tank that successfully generated nonlinear regular waves. According to the variation in the mean wave steepness, irregular wave simulations were carried out in the numerical wave tank. The simulation results indicated an increase in the nonlinear interaction between the wave components, which was numerically verified as the mean wave steepness. The results of this study demonstrate that the HOS method is an accurate and efficient method for predicting the nonlinear interaction between waves, which increases with wave steepness.