• 제목/요약/키워드: boundary characteristics

Search Result 3,207, Processing Time 0.03 seconds

Three-Dimensional Simulation of Seismic Wave Propagation in Elastic Media Using Finite-Difference Method (유한차분법을 이용한 3차원 지진파 전파 모의)

  • 강태섭
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.81-88
    • /
    • 2000
  • The elastic wave equation is solved using the finite-difference method in 3D space to simulate the seismic wave propagation. It is based on the velocity-stress formulation of the equation of motion on a staggered grid. The nonreflecting boundary conditions are used to attenuate the wave field close to the numerical boundary. To satisfy the stress-free conditions at the free-surface boundary, a new formulation combining the zero-stress formalism with the vacuum one is applied. The effective media parameters are employed to satisfy the traction continuity condition across the media interface. With use of the moment-tensor components, the wide range of source mechanism parameters can be specified. The numerical experiments are carried out in order to test the applicability and accuracy of this scheme and to understand the fundamental features of the wave propagation under the generalized elastic media structure. Computational results show that the scheme is sufficiently accurate for modeling wave propagation in 3D elastic media and generates all the possible phases appropriately in under the given heterogeneous velocity structure. Also the characteristics of the ground motion in an sedimentary basin such as the amplification, trapping, and focusing of the elastic wave energy are well represented. These results demonstrate the use of this simulation method will be helpful for modeling the ground motion of seismological and engineering purpose like earthquake hazard assessment, seismic design, city planning, and etc..

  • PDF

The random structural response due to a turbulent boundary layer excitation

  • De Rosa, S.;Franco, F.;Romano, G.;Scaramuzzino, F.
    • Wind and Structures
    • /
    • v.6 no.6
    • /
    • pp.437-450
    • /
    • 2003
  • In this paper, the structural random response due to the turbulent boundary layer excitation is investigated. Using the mode shapes and natural frequencies of an undamped structural operator, a fully analytical model has been assembled. The auto and cross-spectral densities of kinematic quantities are so determined through exact analytical expansions. In order to reduce the computational costs associated with the needed number of modes, it has been tested an innovative methodology based on a scaling procedure. In fact, by using a reduced spatial domain and defining accordingly an augmented artificial damping, it is possible to get the same energy response with reduced computational costs. The item to be checked was the power spectral density of the displacement response for a flexural simply supported beam; the very simple structure was selected just to highlight the main characteristics of the technique. In principle, it can be applied successfully to any quantity derived from the modal operators. The criterion and the rule of scaling the domain are also presented, investigated and discussed. The obtained results are encouraging and they allow thinking successfully to the definition of procedure that could represent a bridge between modal and energy methods.

Large eddy simulation of a square cylinder flow: Modelling of inflow turbulence

  • Tutar, M.;Celik, I.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.511-532
    • /
    • 2007
  • The present study aims to generate turbulent inflow data to more accurately represent the turbulent flow around a square cylinder when the inflow turbulence level is significant. The modified random flow generation (RFG) technique in conjunction with a previously developed LES code is successfully adopted into a finite element based fluid flow solver to generate the required inflow turbulence boundary conditions for the three-dimensional (3-D) LES computations of transitional turbulent flow around a square cylinder at Reynolds number of 22,000. The near wall region is modelled without using wall approximate conditions and a wall damping coefficient is introduced into the calculation of sub-grid length scale in the boundary layer of the cylinder wall. The numerical results obtained from simulations are compared with each other and with the experimental data for different inflow turbulence boundary conditions in order to discuss the issues such as the synthetic inflow turbulence effects on the 3-D transitional flow behaviour in the near wake and the free shear layer, the basic mechanism by which stream turbulence interacts with the mean flow over the cylinder body and the prediction of integral flow parameters. The comparison among the LES results with and without inflow turbulence and the experimental data emphasizes that the turbulent inflow data generated by the present RFG technique for the LES computation can be a viable approach in accurately predicting the effects of inflow turbulence on the near wake turbulent flow characteristics around a bluff body.

Similarity analysis of a forced uniform flow impinging on a rotating disk in a vapor deposition process (증착공정에서의 회전원판 정체점유동에 대한 상사해석)

  • Song, Chang-Geol;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.371-379
    • /
    • 1997
  • A theoretical study for a forced uniform flow impinging on a rotating disk, typically involved in Chemical Vapor Deposition(CVD) and Vapor-phase Axial Deposition(VAD) processes, has been carried out. A set of exact solutions for flow and temperature fields are developed by employing a similarity variable obtained from force balance on a control volume near the disk. The solutions depend on the rotating speed of the disk, .omega., and the forced flow speed toward the disk, a. For constant forced flow speed, the overall boundary layer thickness decreases when the rotating speed increases. Approximately 5%, 15%, and 30% decreases of the thickness are obtained for .omega./a = 2, 5, and 10, respectively, compared to the case of .omega./a = 0 (axisymmetric stagnation point flow). For constant rotating disk speed the boundary layer thickness immediately decreases as the forced flow speed increases, compared to the case of .omega./a .rarw. .inf. (induced flow near a rotating disk). Effects of .omega. and a on heat transfer coefficient are studied and explained with the boundary layer characteristics.

The Acoustic Analysis of Korean Read Speech - with respect to the prosodic phrasing - (한국어 낭독체 문장의 음향분석 -바람과 햇님의 운율구 생성을 중심으로-)

  • Sung Chuljae
    • Proceedings of the KSPS conference
    • /
    • 1996.02a
    • /
    • pp.157-172
    • /
    • 1996
  • This study aims to suggest some theoretical methodology for analysis of the prosodic patterns in Korean Read Speech. The engineering effort relevant to the phonetic study has focused to the importance of prosodic phrasing which may play a major role in analyzing the phonetic DB. Before establishing the prosodic phrase as the prosodic unit, we should describe the features of the boundary signal in a target sentence. With this in mind, the general characteristics of Read Speech and the ToBI(tones and Break Indices), which has been currently in vogue with respect to the prosodic labelling system were presented as the first step. The concrete analysis was carried out with the fable 'North Wind and the Sun' Korean version, where about 25 prosodic units were discriminated by perceptual approach for 5 subjects. Establishing various informations which can be used for deciding a boundary position systematically, we can proceed to the next, viz. acoustic analysis of prosodic unit. The most important which we primarily study for improving the naturalness of synthetic speech may be, at first, detecting the boundary signals in the speech file and accordingly reestablishment it within the raw text.

  • PDF

An Experimental Study of Roughness Effects on the Turbulent Flow Downstream of a Backward-Facing Step (조도가 후향계단 주위의 난류유동에 미치는 영향에 대한 실험적 연구)

  • 김병남;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2083-2099
    • /
    • 1991
  • An experiment has been carried out to investigate the aerodynamic effect of surface roughness on the characteristics of the turbulent separation and reattaching flow downstream of a backward-facing step. The distributions of boundary layer parameters, forward-flow fraction and turbulent stresses in the region near the reattachment point are measured with a split film sensor. It is demonstrated that the streamwise distributions of the forward-flow fraction in the recirculation and reattachment regions are similar, independent of the roughness. The reattachment length is found to be only weakly affected by the roughness. It is also shown that the velocity profile on the rough surface approaches to that of the equilibrium turbulent boundary layer faster than that on the smooth surface in the redeveloping region after reattachment.

Transition of Turbulent Boundary Layer with a Step Change from Smooth to Rough Surface (표면 형상 변화에 따른 난류경계층 유동장 분석)

  • Lee, Jae Hwa
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.3
    • /
    • pp.15-20
    • /
    • 2014
  • Direct numerical simulation (DNS) dataset of a turbulent boundary layer (TBL) with a step change from smooth to rough surface is analyzed to examine spatially developing flow characteristics. The roughness elements are periodically arranged two-dimensional (2-D) spanwise rods with a streamwise pitch of ${\lambda}=8k$ ($=12{\theta}_{in}$), and the roughness height is $k=15{\theta}_{in}$, where ${\theta}_{in}$ is the inlet momentum thickness. The step change is introduced $80{\theta}_{in}$ downstream from the inlet. For the first time, full images from the DNS data with the step change from the smooth to rough walls is present to get some idea of the geometry of turbulent coherent structures over rough wall, especially focusing on their existence and partial dynamics over the rough wall. The results show predominance of hairpin vortices over the rough wall and their spanwise scale growth mechanism by merging.

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

Numerical Study on Non-premixed Methane Flames in Twin-jet Counterflow (Twin-jet 대향류에서 메탄 비예혼합화염에 대한 수치적 연구)

  • Chun, K.W.;Kim, J.H.;Chung, C.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.49-56
    • /
    • 2004
  • A two-dimensional twin-jet counterflow system has been designed, in which two streams from two double-slit nozzles form a counterflow. This flow system enables one to systematically investigate various effects on non-premixed flames, including the non-premixed flame interaction, the edge flame behavior and the effect of curvature. Non-premixed flame interaction in the twin-jet counterflow system has been investigated numerically for methane fuel diluted with nitrogen. Three types of non-premixed flame(conventional counterflow flame, crossed twin-jet flame and petal shaped flame) were simulated depending on the combination of fuel/oxidizer supply to each nozzle. The extinction characteristics of non premixed methane flame in the twin-jet counterflow have been investigated numerically. The boundary of the existence of petal-shaped flames was identified for the twin-jet counterflow flames. Due to the existence of the unique petal-shaped flames, the extinction boundary for the twin-jet counterflow can be extended significantly compared to that for the conventional counterflow non-premixed flames, through the interaction of two flames. Through the comparison of the crossed twin-jet flame and the conventional counterflow flame, structure of the crossed twin-jet counterflow flame is analysed. Through the comparison of the petal shaped flame and the conventional counterflow flame, the extension of the extinction boundary for the twin-jet counterflow is investigated.

  • PDF

IEEE1149.1 Boundary Scan Design for the Detection of Delay Defects (지연고장 탐지를 위한 IEEE 1149.1 바운다리스캔 설계)

  • Kim, Tae-Hyeong;Park, Seong-Ju
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.1024-1030
    • /
    • 1999
  • IEEE 1149.1 바운다리스캔은 보드 수준에서 고장점검 및 진단을 위한 테스트 설계기술이다. 그러나, 바운다리스캔 제어기의 특성상 테스트 패턴의 주입에서 관측까지 2.5 TCK가 소요되므로, 연결선상의 지연고장을 점검할 수 없다. 본 논문에서는 UpdateDR 신호를 변경하여, 테스트 패턴 주입에서 관측까지 1 TCK가 소요되게 함으로써, 지연고장 점검을 가능하게 하는 기술을 소개한다. 나아가서, 정적인 고장점검을 위한 테스트 패턴을 개선해 지연고장 점검까지 가능하게 하는, N개의 net에 대한 2 log(n+2) 의 새로운 테스트패턴도 제안한다. 설계와 시뮬레이션을 통해 지연고장 점검이 가능함을 확인하였다.Abstract IEEE 1149.1 Boundary-Scan is a testable design technique for the detection and diagnosis of faults on a board. However, since it takes 2.5TCKs to observe data launched from an output boundary scan cell due to inherent characteristics of the TAP controller, it is impossible to test delay defects on the interconnect nets. This paper introduces a new technique that postpones the activation of UpdateDR signal by 1.5 TCKs while complying with IEEE 1149.1 standard. Furthermore we have developed 2 log(n+2) , where N is the number of nets, interconnect test patterns to test delay faults in addition to the static interconnect faults. The validness of our approach is verified through the design and simulation.