• Title/Summary/Keyword: boundary characteristics

Search Result 3,206, Processing Time 0.027 seconds

The Boundary Delimitation of Busan Metropolitan Area using Network Analysis (네트워크 분석기법을 이용한 광역도시권 설정방안 - 부산광역권 설정사례를 중심으로 -)

  • Shim, Jae-Heon;Cho, Yeon-Ho
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.75-86
    • /
    • 2011
  • This paper proposes a modified way to delimit the boundary of Busan metropolitan area and compares the empirical analysis with the existing metropolitan area boundary. More specifically, the present state of the metropolitan transportation network is reflected by service area analysis in our study area. The analysis of the linkage between the central city and its fringes considers various travel behaviors as well as commuting to work and school, based on origin-destination trip information. In addition, more diverse indices are applied to the analysis of urban characteristics, and the land cover map is used as well. Compared with the current Busan metropolitan area boundary, our empirical analysis captures the status quo of the undergoing spatial dynamics such as the newly form ed homogeneous sphere of living in our study area.

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad;Jafari, Ali;Mahesh, Vinyas
    • Structural Engineering and Mechanics
    • /
    • v.72 no.1
    • /
    • pp.113-129
    • /
    • 2019
  • A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Numerical and Experimental Investigation on Structure-acoustic Coupling Effect in a Reverberant Water Tank (잔향수조의 구조-음향 연성효과에 관한 수치 및 실험적 고찰)

  • Park, Yong;Kim, Kookhyun;Cho, Dae-Seung;Lee, Jong-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Underwater acoustic power should be measured in a free field, but it is not easy to implement. In practice, the measurement could be performed in a reverberant field such as a water-filled steel tank and concrete tank. In this case, the structure and the acoustic field are strongly or weakly coupled according to material properties of the steel and water. So, characteristics of the water tank must be investigated in order to get the accurate underwater acoustic power. In detail, modal frequencies, mode shapes of the structure and frequency response functions of the acoustic field could represent the characteristics of the reverberant water tank. In this paper, the structure-acoustic coupling has been investigated on a reverberant water tank numerically and experimentally. The finite element analysis has been carried out to estimate the structural and acoustical modal parameters under the dry and water-filled conditions, respectively. In order to investigate the structure-acoustic coupling effect, the numerical analysis has been performed according to the structure stiffness change of the water tank. The acoustic frequency response functions were compared with the numerical analysis and acoustic exciting test. From the results, the structural modal frequencies of the water-filled condition have been decreased compared to those of the dry condition in the low frequency range. The acoustic frequency response functions under the coupled boundary conditions showed different patterns from those under the ideal boundary conditions such as the pressure release and rigid boundary condition, respectively.

THD Lubrication Analysis of a Surface-Textured Parallel Thrust Bearing with Rectangular Grooves: Part 1 - Effect of Film-Temperature Boundary Condition (사각형 그루브로 Surface Texturing한 평행 스러스트 베어링의 열유체윤활 해석: 제1보 - 유막온도경계조건의 영향)

  • Park, TaeJo;Kang, JeongGuk
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.267-273
    • /
    • 2022
  • Surface texturing is the latest technology for processing grooves or dimples on the friction surface of a machine. When appropriately applied, it can reduce friction and significantly increase durability. Despite many studies over the past 20 years, most are isothermal (ISO) analyses in which the viscosity of the lubricant is constant. In practice, the viscosity changes significantly owing to the heat generated by the viscous shear of the lubricant and film-temperature boundary condition (FTBC). Although many thermohydrodynamic (THD) analyses have been performed on various sliding bearings, only few results for surface-textured bearings have been reported. This study investigates the effects of the FTBC and groove number on the THD lubrication characteristics of a surface-textured parallel thrust bearing with multiple rectangular grooves. The continuity, Navier-Stokes, and energy equations with temperature-viscosity-density relations are numerically analyzed using a commercial computational fluid dynamics code, FLUENT. The results show the pressure and temperature distributions, variations of load-carrying capacity (LCC), and friction force with four FTBCs. The FTBCs greatly influence the lubrication characteristics of surface-textured parallel thrust bearings. A groove number that maximizes the LCC exists, which depends on the FTBC. ISO analysis overestimates the LCC but underestimates friction reduction. Additional analysis of various temperature boundary conditions is required for practical applications.

Turbulence Characteristics in a Circular Open Channel by PIV Measurements

  • Kim, Sun-Gu;Sung, Jae-Yong;Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.7
    • /
    • pp.930-937
    • /
    • 2011
  • The characteristics of mean velocity and turbulence have been analyzed in the circular open channel flow using PIV measurement data for a wide range of water depth. The measured data are fitted to a velocity distribution function over the whole depth of the open channel. Reynolds shear stress and mean velocity in wall unit are compared with the analytic models for fully-developed turbulent boundary layer. Both the mean velocity and Reynolds shear stress have different distributions from the two-dimensional boundary layer flow when the water depth increases over 50% since the influence of the side wall penetrates more deeply into the free surface. The cross-stream Reynolds normal stress also has considerably different distribution in view of its peak value and decreasing rate in the outer region whether the water depth is higher than 50% or not.

Electrical Characteristics of (BaSr)TiO3-based PTCR Devices under the Electric Field

  • Lee, Joon-Hyung;Cho, Sang-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.16-20
    • /
    • 2002
  • Semiconducting (Ba.Sr)TiO$_3$ceramic device, which shows the PTCR effect, has been usually used as a current limiter. In this case, the device should endure the condition under the high electric field. In this study, the dynamic electrical properties of the PTCR device under high voltage has been evaluated. Two different formulated powders were used and the sintered bodies exhibited the different grain size and porosity. The wide range of characterization such as complex impedance spectroscopy, microstructure, I-V characteristics and voltage dependence of resistivity of the samples were performed. The PTCR effect of the specimen containing coarse grains was very sensitively dependent on the AC electric field, showing that it was inversely pro-portional to the grain boundary potential barrier. The withstanding voltage was proportional to the potential barrier of grain boundary.

Wave Control by Multi-Rowed Impermeable Submerged Breakwaters in Three-Dimensional Wave Fields (3차원파동장에 있어서 복수열불투과성잠제에 의한 파랑제어에 관한 연구)

  • 김도삼;배은훈;이봉재
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.107-113
    • /
    • 2001
  • This study is focused on the wave control by economical multi-rowed impermeable submerged breakwaters which need less materials than a one-rowed submerged breakwater. A boundary element method and eigenfunction expansion method based on the Green\`s theorem are appled to analyze the characteristics of wave transformation. Submerged breakwaters are consisted of one and two-row with rectangular section. Wave transformation characteristics are investigated by the various combinations of placement distance and crown water depth.

  • PDF

Mass and Heat Transfer Characteristics of Vertical Flat Plate with Free Convection

  • Kim Myoung- Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.729-735
    • /
    • 2005
  • This paper has dealt with the characteristics of mass and heat transfer of vertical flat plate with free convection. The theory of similarity transformations applied to the momentum and energy equations for free convection. To derive the similarity equation of mass transfer. the equation for conservation of species was added to the continuity. momentum and energy equations. The momentum, energy and species equations set numerically to obtain the velocity, temperature and mass fraction of species as dimensionless. For cases where momentum transport dominates, the thermal boundary layers are shorter than the momentum boundary layer. The relationships between momentum, energy and species were clarified from this study.

Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis (3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구)

  • 진봉용;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

A Study on the Immateriality in Contemporary Interior Space (현대 실내공간에서의 비물질적 특성에 관한 연구)

  • 신홍경;옥창수
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.3
    • /
    • pp.76-83
    • /
    • 2004
  • Nowadays, our societies use digital technology in new architectural shape and space design to transcend three dimension limit so the boundary of the imagination world and actuality world has been collapsed. Traditional spatial value has been collapsed. Also indetermination and temporary assumption in time, fluidness and dematerialized, simultaneity and reiteration in image are relative with this circumstances. In architectural shape, media characteristics which secede from traditional characteristics of place tectonic value have occurred. Therefore, indifference and interests in shape, inter-permeation in interior and exterior space, homogeneous equivalence spatial extension have occurred. The purpose in this study examines dematerialized in contemporary space design and light materials and also investigates general and architectural background. The results of this study are as follows. First, circumstances of human have changed from physically limited boundary to unfixed, nonphysical, lightness and vague things. Second, casting off volume in shape and also dissembling exclusive and constructive Third, interior and exterior space by transparency intimates media possibility of information screen. Fourth, seek information and organic response, ambivalent transformation, accumulation of image and new mutual understanding system.