• Title/Summary/Keyword: boundary characteristics

Search Result 3,206, Processing Time 0.028 seconds

Hydroelastic Vibration Analysis of Structures in Contact with Fluid

  • Chung, Kie-Tae;Kim, Young-Bok;Kang, Ho-Seung
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.2 no.1
    • /
    • pp.18-28
    • /
    • 1994
  • In the vibration analysis of submerged or floating bodies such as ships and offshore structures, the coupled system between fluid and structure should be considered using the compatibility conditions on the wetted surface. It is well known that the hydroelastic vibration analysis of structures in contact with fluid can be done by applying the finite element method(FEM) to structures and the boundary element method(BEM) to the fluid domain. However, such an approach is impractical due to the characteristics of the fully coupled added mass matrix of fluid on the entire wetted surface. To overcome this difficulty, an efficient approach based on a reanalysis scheme is proposed in this paper. The proposed method can be applied for cases of higher local modes and beam-like modes for which three-dimensional reduction factors are not known. The three dimensional reduction factors are not needled and thus the restrictions can be removed in the analyses of non-beam like modes or local vibration modes by considering fluid-structure interaction. The validity and calculation efficiency of the proposed method are proved through numerical examples.

  • PDF

Microstructure Characteristics and Identification of Low-Carbon Steels Fabricated by Controlled Rolling and Accelerated Cooling Processes (제어 압연과 가속 냉각에 의해 저탄소강에서 형성되는 미세조직의 특징과 구분)

  • Lee, Sang-In;Hong, Tae-Woon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.636-642
    • /
    • 2017
  • In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of ${\alpha}-ferrite$ and cementite($Fe_3C$) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of low-carbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.

An Analytical Framework for a Technological Innovation System: the Case of a Nuclear Power System

  • Lee, Tae Joon;Lee, Young-Joon
    • Asian Journal of Innovation and Policy
    • /
    • v.7 no.2
    • /
    • pp.235-286
    • /
    • 2018
  • The aim of paper is to develop an alternative framework for the study of technological innovation systems. In contrast with conventional literature, this analytical framework is designed for entrepreneurs, i.e. actors, at the micro level rather than policy-makers at the meso or macro level. Herein, the entrepreneurial innovation system is conceptually refined by synthesizing knowledge regarding technological innovation and innovation systems. Drawing upon the intrinsic technological identity essential for innovation, the entrepreneurial innovation system is shown to involve three core changes in terms of technology, organization and market, and their couplings within its internal boundary over time. This analytical framework also takes into account the fact that the innovation system is influenced by and copes with the external environment during its evolution. Moreover, the framework of the entrepreneurial innovation system considers the recent trend of sustainable development. The technical and socio-economic characteristics of a nuclear powersystem are studied empirically to articulate an analytical framework that should be very useful for technological innovation in other energy systems by reflecting their unique features.

- Numerical Solutions for the Flow past a Cylinder- (원주주위를 지나는 흐름에 관한 수치해석)

  • 조용식;윤태훈
    • Water for future
    • /
    • v.31 no.4
    • /
    • pp.291-297
    • /
    • 1998
  • The two dimensional time dependent flow past a circular cylinder is analyzed numerically. In the analysis, equations of conservation of mass and momentum are transformed to equations of stream function-vorticity and vorticity transport, and nondimensionalized by nondimensional parameters representing flow characteristics, The resulting stream function-vorticity equation and vorticity transport equation are solved by successive over relaxation scheme and alternating direct implicit scheme. Numerical experiments are performed for the flow in the range of Reynolds number 125 to 275. The time dependent streamlines, vorticities, pressure on cylinder surface, separation angle, and drag and lift coefficients are calculated, and the method for estimation of pressure on cylinder surface and the outer boundary limit are developed.

  • PDF

Numerical Simulation of Dam-Break Problem with Cut-cell Method (분할격자를 이용한 댐붕괴파의 수치해석)

  • Kim, Hyung-Jun;Yoo, Je-Seon;Lee, Seung-Oh;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1752-1756
    • /
    • 2008
  • A simple, accurate and efficient mesh generation technique, the cut-cell method, is able to represent an arbitrarily complex geometry. Both structured and unstructured grid meshes are used in this method. First, the numerical domain is constructed with regular Cartesian grids as a background grid and then the solid boundaries or bodies are cut out of the background Cartesian grids. As a result, some boundary cells can be contained two numerical conditions such as the flow and solid conditions, where the special treatment is needed to simulate such physical characteristics. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. Also, the TVD-WAF method is applied on the Cartesian cut-cell grids to stabilize numerical results. Present method is validated for the rectangular dam break problems. Initially, a conventional grid is constructed with the Cartesian regular mesh only and then applied to the dam-break flow simulation. As a comparative simulation, a cut-cell grids are applied to represent the flow domain rotated with arbitrary angles. Numerical results from this study are compared with the results from the case of the Cartesian regular mesh only. A good agreement is achieved with other numerical results presented in the literature.

  • PDF

Sensitivity Analysis of Effective Viscosity Coefficients for Computing Characteristics of Ultrathin Gas Film Bearings (초미세 틈새의 기체 베어링 해석용 유효 점도의 표현식과 관련 계수들의 민감도 해석)

  • Kim, Ui Han;Rhim, Yoon Chul
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • A more accurate expression for effective viscosity is obtained using a linear regression of the data from Fukui-Kaneko's model, which are obtained through numerical calculations based on the linearized Boltzmann equation. Veijola and Turowski's expression is adopted as a base function for effective viscosity. The four coefficients in that equation are optimized, and sensitivity analysis is conducted for these coefficients. The results show that the coefficient for the first-order Knudsen number is the most accurate, whereas the coefficient in the exponential of the Knudsen number is the least accurate compared with Fukui-Kaneko's results. The expression for effective viscosity is accurate within 0.02% rms of Fukui-Kaneko's results for the inverse Knudsen numbers from 0.01 to 100 and surface accommodation coefficients ranging from 0.7 to 1.

Numerical Experiment on the Sogcho Eddy due to the strong offshore winds in the East Sea

  • Kim Soon Young;Lee Hyong Sun;Lee Jae Chul
    • Fisheries and Aquatic Sciences
    • /
    • v.1 no.1
    • /
    • pp.7-18
    • /
    • 1998
  • In order to understand the generation of the Sogcho Eddy due to the strong offshore winds, we first investigated the characteristics of winds at Sogcho, Kangnung and Samchuk, and then carried out a series of numerical experiments using the nonlinear 1 1/2-layer model. The models were forced by wind stress fields, similar in structure to the prevailing winds that a field in the east coast of Korea during the winter season. The winds were composed of the background winds $(-1\;dyne/cm^2)$ for 90 days and the local winds $(-4\;dyne/cm^2)$ for 30 days. The analysis of wind data at three stations (Sogcho, Kangnung, and Samchuk) showed that the wind was stronger in winter than in other seasons and the offshore component was much dominant. According to our numerical solutions, the Sogcho Eddy of about 200 km in diameter was generated due to the strong offshore winds prevailing in the Kangnung - Sogcho regions. The eastward propagation of the Rossby waves reflected at the western boundary resulted in the eastward meandering motion from the eastern side of the eddy.

  • PDF

Droplet Vaporization in High Pressure Environments with Pressure Oscillations (강한 압력 교란에 구속된 고압 액적의 천이 기화)

  • 김성엽;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.157-163
    • /
    • 2003
  • A systematic numerical experiment has been conducted to study droplet gasification in high pressure environments with pressure oscillations. The general frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. Time-dependent conservation equations of mass, momentum, energy, and species concentrations are formulated in axisymmetric coordinate system for both the droplet interior and ambient gases. In addition, a unified property evaluation scheme based on the fundamental equation of state and empirical methods are used to find fluid thermophysical properties over the entire thermodynamic domain of interest. The governing equations with appropriate physical boundary conditions are numerically time integrated using an implicit finite-difference method with a dual time-stepping technique. A series of calculation have been carried out to investigate the gasification of an isolated n-pentane droplet in a nitrogen gas environment over a wide range of ambient pressures and frequencies. Results show that the mean pressures and frequencies of the ambient gas have strong influences on the characteristics of the droplet gasification. The amplitude of the response increases with increasing pressure, and the magnitude of the vaporization response increases with the frequency.

  • PDF

Installed Performance Analysis of a Turboshaft Engine Considering Inlet and Exhaust Losses Estimated by Cfd Technique (CFD 기법에 의해 예측된 흡입구 및 배기구 손실을 고려한 터보축 엔진의 장착성능에 관한연구)

  • Kong Chang-Duk;Owino George Omollo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.106-109
    • /
    • 2006
  • The purpose of this study is to analyze the installed performance of the PW206C turbo shaft engine used in the development of the smart UAV(Unmanned Ariel Vehicle) by KARI(Korean Aerospace Research Institute). It mainly aims to investigate performance behavior at installed conditions using both inlet and exhaust losses generated by CFD analysis of the ducts. The ways employed to be able to analyze the performance extensively were mainly rallied out by performing design point analysis of the engine where the performance simulation results from the commercial program 'GASTURB 9' used for simulation were used as inlet boundary condition for the ducts in CFD program The use of CFD tool involve modeling of the ducts to conform with the stipulated shape and sizes as defined by KARI with a grid density that allows reasonable flow characteristics applicable to aircraft components. Respective values of Shaft horse power obtained by varying flight Mach number, Gas generator RPM and Altitude considering several losses inclusive of those estimated by use of CFD tool were then plotted at three conditions with the ECS-OFF, ECS-MAX and at un-installed condition. Reasonable results were obtained as a result of using computational fluid dynamics that can hence be justified as an alternative tool for use in future flow analysis of engine and components.

  • PDF

A Study of Hygroscopic Moisture Diffusion Analysis in Multimaterial System (이종 소재 접합체의 흡습 질량 확산 해석)

  • Kim, Yong-Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.11-15
    • /
    • 2011
  • Heat transfer equation is first reviewed and then governing equation of moisture diffusion. Analogy scheme is applied to analysis the moisture absorption problem of polymers. It make possible to numerically analyze the diffusion problem for single medium by using commercial finite element code if it is under the isothermal loading condition. It is extended to special multimaterial system by introducing pressure ratio function, whose moisture characteristics of materials are proportional to temperature only. The weight changes of silicon-nonconductive-polymer joint model due to moisture absorption is measured and been very close to the numerical results as for single media with boundary condition with zero concentration, but yields numerical errors as for multisystem media.