• Title/Summary/Keyword: botrytis cinerea

Search Result 404, Processing Time 0.033 seconds

Evaluation of Lettuce Germplasm Resistance to Gray Mold Disease for Organic Cultivations

  • Shim, Chang Ki;Kim, Min Jeong;Kim, Yong Ki;Jee, Hyeong Jin
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • This study was conducted to evaluate the resistance of 212 accessions of lettuce germplasm to gray mold disease caused by Botrytis cinerea. The lettuce germplasm were composed of five species: Lactuca sativa (193 accessions), L. sativa var. longifolia (2 accessions), L. sativa var. crispa (2 accessions), L. saligna (2 accessions), and L. serriola (1 accession); majority of these originated from Korea, Netherlands, USA, Russia, and Bulgaria. After 35 days of spray inoculation with conidial suspension ($3{\times}10^7$ conidia/ml) of B. cinerea on the surface of lettuce leaves, tested lettuce germplasm showed severe symptoms of gray mold disease. There were 208 susceptible accessions to B. cinerea counted with 100% of disease incidence and four resistant accessions, IT908801, K000598, K000599, and K021055. Two moderately resistant accessions of L. sativa, K021055 and IT908801, showed 20% of disease incidence of gray mold disease at 45 days after inoculation; and two accessions of L. saligna, K000598 and K000599, which are wild relatives of lettuce germplasm with loose-leaf type, showed complete resistance to B. cinerea. These four accessions are candidates for breeding lettuce cultivars resistant to gray mold disease.

Identification of Botrytis cinerea, the Cause of Post-Harvest Gray Mold on Broccoli in Korea

  • Aktaruzzaman, Md.;Afroz, Tania;Hong, Sae-Jin;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.372-378
    • /
    • 2017
  • In this study, we identified the causative agent of post-harvest gray mold on broccoli that was stored on a farmers' cooperative in Pyeongchang, Gangwon Province, South Korea, in September 2016. The incidence of gray mold on broccoli was 10-30% after 3-5 weeks of storage at $3^{\circ}C$. Symptoms included brownish curd and gray-to-dark mycelia with abundant conidia on the infected broccoli curds. The fungus was isolated from infected fruit and cultured on potato dextrose agar. To identify the fungus, we examined the morphological characteristics and sequenced the rDNA of the fungus and confirmed its pathogenicity according to Koch's postulates. The results of the morphological examination, pathogenicity test, and sequencing of the 5.8S rDNA of the internal transcribed spacer regions (ITS1 and ITS4) and three nuclear protein-coding genes, G3PDH, HSP60, and RPB2, revealed that the causal agent of the post-harvest gray mold on broccoli was Botrytis cinerea. To our knowledge, this is the first report of post-harvest gray mold on broccoli in Korea.

Purification and Characterization of an Exo-polygalacturonase from Botrytis cinerea

  • Lee, Tae-Ho;Kim, Byung-Young;Chung, Young-Ryun;Lee, Sang-Yeol;Lee, Chang-Won;Kim, Jae-Won
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.134-140
    • /
    • 1997
  • Botrytis cinerea T91-1 has been shown to produce at least four different polygalacturonases into a liquid medium containing citrus pectin, a carbon sousrce. One of the enzymes, which had an apparent molecular weight of 66 kDa estimated by denatured polyacrylamide gel electrophoresis, was purified to electrophoretic homogeneity by a series of procedures including a cetone precipitation, ion exchange, heparin affinity, and reverse phase column chromatographies. The molecular weight of native enzyme was determined to be 64 kDa by gel permeation chromatography indicating the enzyme to be a single polypeptide chain. By viscometric analysis, the enzyme was revealed as exo-polygalacturonase. The enzyme activity was inhibited by divalent cations such as $Ca^{2+}$, $Mg^{2+}$, and Cu$^{2+}$. Km and Vmax for polygalacturonic acid hydrolysis were 0.33 mg/ml and 28.6 nM/min, respectively. The optimum temperature for enzymatic activity was 5$0^{\circ}C$. And the enzyme showed optimal pH values between 4.0 and 5.0. The enzyme was stable upto 12 hours in the range of pH 3 to 8 and at temperature below 3$0^{\circ}C$.

  • PDF

Stabilization and Antifungal Activity of Isolated Symbiotic Bacteria from Entomopathogenic Nematodes (곤충병원성 선충에서 분리한 공생세균의 안정화 및 항진균활성)

  • Kang, Dong-Hee;Kim, Hyo-Hyun;Nam, Uk-Ho;Kim, Hyun-Soo
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.132-139
    • /
    • 2015
  • In order to use the symbiotic bacteria from ethomophatogenic nematodes as a biological control agent for agriculture, the cultural condition for maintaining phase I and antifungal activity was investigated. Symbiotic bacteria (SB) 1 stain from nematodes were selected from the three strains isolated from entomopathogenic nematodes. The growth of the SB 1 strain in NB, TSB, TY and YS medium was higher than that of the SB 2 and SB 3 strain. The packed cell volume of the SB 1 strain was reduced in NB medium which showed radical pH change. Phase I of the SB 1 strain was maintained in TSB medium after being stored for 2 weeks at $4^{\circ}C$. Culture broth with the SB 1 strain in TSB medium for 6 days and 7 days showed antifungal activities against Rhizoctonia solani KACC 40142, Botrytis cinerea Pers. KACC 40854, and Botrytis cinerea Pers. KACC 41008. Culture broth with the SB 1 strain in TSB medium containing 100 mM L-proline for 5 days showed antifungal activities against Rhizoctonia solani KACC 40142, and Botrytis cinerea Pers. KACC 40854.

Diseases and the Symptoms Recently Occurred on 'Shiranuhi' Citrus Cultivar in Jeju Island (최근 부지화 감귤 품종에 발생하는 식물병의 종류 및 그 증상)

  • Hyun, Jae-Wook;Kim, Dong-Hwan;Kim, Kwang-Sik;Lee, Seong-Chan;Ko, Sang-Wook;Lim, Han-Cheol
    • Research in Plant Disease
    • /
    • v.10 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • 'Shiranuhi' citrus cultivar bred by crossing 'Kiyomi' tangor and 'Nakano No.3' ponkan is cultivated in polyethylene film house, and the number of cultivating farmers is rapidly increasing in recent years. Recently, some diseases are taking place on 'Shiranuhi' fruit in some orchards, and were to be big problem in some case. It was surveyed that six diseases were mainly taken place in 'Shiranuhi' cultivating orchards in Jeju Island. They were Phytophthora citrophthora, Alternaria sp., Penicillium digitatum, Botrytis cinerea, Diaporthe citri and Xanthomonas axonopodis pv. citri.

Antagonistic Effect of Streptomyces sp. BS062 against Botrytis Diseases

  • Kim, Young-Sook;Lee, In-Kyoung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.339-342
    • /
    • 2015
  • The use of microorganisms and their secreted molecules to prevent plant diseases is considered an attractive alternative and way to supplement synthetic fungicides for the management of plant diseases. Strain BS062 was selected based on its ability to inhibit the mycelial growth of Botrytis cinerea, a major causal fungus of postharvest root rot of ginseng and strawberry gray mold disease. Strain BS062 was found to be closely related to Streptomyces hygroscopicus (99% similarity) on the basis of 16S ribosomal DNA sequence analysis. Postharvest root rot of ginseng and strawberry gray mold disease caused by B. cinerea were controlled up to 73.9% and 58%, respectively, upon treatment with culture broth of Streptomyces sp. BS062. These results suggest that strain BS062 may be a potential agent for controlling ginseng postharvest root rot and strawberry gray mold disease.

Effect of nitrogen types and the electrical conductivity of a nutrient solution on gray mold caused Botrytis cinerea on strawberry plants

  • Nam, Myeong hyeon;Lee, Hee chul;Kim, Tae il
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.1
    • /
    • pp.103-111
    • /
    • 2019
  • Gray mold caused by Botrytis cinerea on strawberry plants is an economically significant disease in Korea. The rates for diseased fruits are high during the strawberry harvesting period from December to February, especially in hydroponic cultivation. This study assessed the effect of the nitrogen type in the soil culture and the electrical conductivity (EC) of the nutrient solution in a hydroponic culture on the gray mold incidence in 'Seolhyang' strawberry plants. The nitrogen sources assayed included calcium nitrate tetrahydrate (CN4), calcium nitrate decahydrate (CN10), ammonium sulfate (AS), and commercial fertilizer 213 (213). The effect of the EC was tested at 0.5, 0.8, 1.0, and $1.5dS{\cdot}m^{-1}$. The occurrence of gray mold varied according to the nitrogen type. The disease incidence and nitrogen content for the main nitrogen type were higher compared to the non-treated control. The AS treatment showed the highest occurrence of tipburn and gray mold. The incidence of gray mold as well as the nitrogen and phosphorus content of the leaves increased as the EC level was increased. These results indicate that the incidence of gray mold in strawberry plants is related to the nitrogen content of the leaf and the EC of the nutrient solution.

Gray Mold on Carrot Caused by Botrytis cinerea in Korea

  • Park, Kyeong-Hun;Ryu, Kyoung-Yul;Yun, Hye-Jeong;Yun, Jeong-Chul;Kim, Byeong-Seok;Jeong, Kyu-Sik;Kwon, Young-Seok;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.364-368
    • /
    • 2011
  • Gray mold caused by Botrytis cinerea was found on a carrot seedling in a greenhouse and a field at Daegwallryeong, Gangwon Province in 2007-2009. Symptoms included irregular, brown, blight, or chlorotic halo on leaves and petioles of the carrots. Fungal conidia were globose to subglobose or ellipsoid, hyaline or pale brown, nonseptate, one celled, $7.2-18.2{\times}4.5-11\;{\mu}m$ ($12.1{\times}8.3\;{\mu}m$) in size, and were formed on botryose heads. B. cinerea colonies were hyaline on PDA, and then turned gray and later changed dark gray or brown when spores appeared. The fungal growth stopped at $35^{\circ}C$, temperature range for proper growth was $15-25^{\circ}C$ on MEA and PDA. Carrots inoculated with $1{\times}10^5$ ml conidial suspension were incubated in a moist chamber at $25{\pm}1^{\circ}C$ for pathogenicity testing. Symptoms included irregular, brown, water-soaked rot on carrot roots and irregular, pale brown or dark brown, water-soaked rot on leaves. Symptoms were similar to the original symptoms under natural conditions. The pathogen was reisolated from diseased leaves, sliced roots, and whole roots after inoculation. As a result, this is the first report of carrot gray mold caused by B. cinerea in Korea.

Entomopathogenic Fungi as Dual Control Agents against Both the Pest Myzus persicae and Phytopathogen Botrytis cinerea

  • Yun, Hwi-Geon;Kim, Dong-Jun;Gwak, Won-Seok;Shin, Tae-Young;Woo, Soo-Dong
    • Mycobiology
    • /
    • v.45 no.3
    • /
    • pp.192-198
    • /
    • 2017
  • The green peach aphid (Myzus persicae), a plant pest, and gray mold disease, caused by Botrytis cinerea, affect vegetables and fruit crops all over the world. To control this aphid and mold, farmers typically rely on the use of chemical insecticides or fungicides. However, intensive use of these chemicals over many years has led to the development of resistance. To overcome this problem, there is a need to develop alternative control methods to suppress populations of this plant pest and pathogen. Recently, potential roles have been demonstrated for entomopathogenic fungi in endophytism, phytopathogen antagonism, plant growth promotion, and rhizosphere colonization. Here, the antifungal activities of selected fungi with high virulence against green peach aphids were tested to explore their potential for the dual control of B. cinerea and M. persicae. Antifungal activities against B. cinerea were evaluated by dual culture assays using both aerial conidia and cultural filtrates of entomopathogenic fungi. Two fungal isolates, Beauveria bassiana SD15 and Metarhizium anisopliae SD3, were identified as having both virulence against aphids and antifungal activity. The virulence of these isolates against aphids was further tested using cultural filtrates, blastospores, and aerial conidia. The most virulence was observed in the simultaneous treatment with blastospores and cultural filtrate. These results suggest that the two fungal isolates selected in this study could be used effectively for the dual control of green peach aphids and gray mold for crop protection.

Selection of Antagonistic Soil Actinomycetes Against Both Colletotrichum orbiculare and Botrytis cinerea in Cucumber Plants (오이 탄저병원균과 잿빛곰팡이병원균에 억제 효과가 있는 방선균 선발)

  • Kwak, Hwa-Sook;Kim, Jiwon;Park, Jin Woo;Sang, Mee Kyung
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.4
    • /
    • pp.575-588
    • /
    • 2021
  • The purpose of this study is to select actinomycetes with antifungal activity against Botrytis cinerea and Colletotrichum orbiculare, which are airborne pathogens in cucumber plants. In 2020, 560 species of actinomycetes were isolated from rhizome soils of various vegetables in Korea; 7 strains showing simultaneous antifungal activity against two pathogens were selected. Finally, strain S20-465 was selected through dual culture and plant assay. This strain was identified as Streptomyces sp. based on 16S rRNA analysis. The culture filtrate of strain S20-465 inhibited mycelial growth of both pathogens by more than 60%. In addition, when cucumber plants were treated with 20-fold and 40-fold diluted culture filtrates of S20-465, lesions caused by B. cinerea and C. orbiculare on cucumber leaves were significantly reduced compared to the control. This results suggest that strain S20-465 produces specific secondary metabolites with antifungal activity against both pathogens.