• 제목/요약/키워드: boron-doped diamond(BDD)

검색결과 25건 처리시간 0.029초

붕소가 도핑된 다이아몬드전극을 이용한 폐수처리특성 (Characteristic of wastewater treatment using Boron-doped Diamond Electrode)

  • 이은주;영장 태명;등도 소;박수길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.795-798
    • /
    • 2003
  • Toxic organics are of great environmental concern primarily because they are toxic to mammals and birds, and are relatively soluble in water to contaminate surface water and groundwater. In this study, the decomposition of phenol, a widely used organic, in aqueous solutions by Boron doped diamond(BDD) electrode was examined. Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped diamond (BDD) were used as anode for generating ozone gas by electrolysis of acid solution. In this work. we have studied ozone generating system using BDD electrode. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable for electrolyte while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte. Decomposition of phenol concentration in the reaction solution by photolytic ozonation( $UV/O_3$) was analyzed by HPLC epuipped with a UV detector.

  • PDF

붕소가 도핑된 다이아몬드 전극을 이용한 오존 발생의 효과 및 응용 (Ozone Generation Effect and application using Boron-doped Diamond Electrode)

  • 피영민;;박수길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.170-172
    • /
    • 2002
  • Thin, Boron-doped conducting diamond films are expected to be excellent electrodes for industrial electrolysis. Boron-doped diamond(BDD) were used as anode for generating ozone gas by electrolysis of acid solution. In this work, we have studied ozone generating system using BDD electrode. In order to determine the ozone generation properties of diamond electrode, experimental conditions, electrolyte concentration, temperature, flow rate and reaction time were varied diversely. As a result, we could confirm that ozone gas was generated successfully and the performance of diamond electrode was stable for electrolyte while $PbO_2$ electrode was disintegrated. Actually we are found that ozone amount increased by lowering the temperature of electrolyte.

  • PDF

전처리 공정에 따른 보론 첨가 다이아몬드 박막의 성장 거동 (Study on the growth of boron-doped diamond films in relation to pretreatment processes)

  • 유미영;이송현;송풍근
    • 한국표면공학회지
    • /
    • 제57권1호
    • /
    • pp.1-7
    • /
    • 2024
  • The study investigated the impact of substrate pretreatment on depositing high-quality B-doped diamond (BDD) thin films using the HFCVD method. Films were deposited on Si and Nb substrates after sanding and seeding. Despite identical sanding conditions, BDD films formed faster on Nb due to even diamond seed distribution. Post-deposition, film average roughness (Ra) remained similar to substrate Ra, but higher substrate Ra led to decreased crystallinity. Nb substrate with 0.83 ㎛ Ra exhibited faster crystal growth due to dense, evenly distributed diamond seeds. BDD film on Nb with 0.83 ㎛ Ra showed a wide, stable potential window (2.8 eV) in CV results and a prominent 1332 cm-1 diamond peak in Raman spectroscopy, indicating high quality. The findings underscore the critical role of substrate pretreatment in achieving high-quality BDD film fabrication, crucial for applications demanding robust p-type semiconductors with superior electrical properties.

Electrochemical Degradation of Phenol and 2-Chlorophenol Using Pt/Ti and Boron-Doped Diamond Electrodes

  • Yoon, Jang-Hee;Shim, Yoon-Bo;Lee, Byoung-Seob;Choi, Se-Yong;Won, Mi-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2274-2278
    • /
    • 2012
  • To test the efficiency of the BDD electrode for complete mineralization of organic wastewater, phenol and 2-chlorophenol (2-CP) were treated electrochemically with both an active Pt/Ti electrode and a nonactive boron doped diamond (BDD) electrode, respectively, in neutral aqueous medium. Aqueous solutions of both phenol and 2-chlorophenol were treated electrochemically using an in-house fabricated flow through electrochemical cell (FTEC). The experimental variables included current input, treatment time, and the flow rate of the solutions. Depending on the magnitude of the applied current and reaction time, the compounds were either completely degraded or partially oxidized to other intermediates. Removal efficiencies reached as high as 93.2% and 94.8% both at the Pt/Ti electrode and BDD electrode, respectively, at an applied current of 200 mA for a 3.0 hr reaction and a flow rate of 4 mL/min. The BDD electrode was much more efficient for the complete mineralization of phenol and 2-chlorophenol than the Pt/Ti electrode.

폐수처리용 붕소 도핑 다이아몬드 전극의 수명에 미치는 제조공정 변수의 영향 (Influence of Manufacturing Conditions for the Life Time of the Boron-Doped Diamond Electrode in Wastewater Treatment)

  • 최용선;이영기;김정열;김경민;이유기
    • 한국재료학회지
    • /
    • 제27권3호
    • /
    • pp.137-143
    • /
    • 2017
  • Boron-doped diamond (BDD) electrode has an extremely wide potential window in aqueous and non-aqueous electrolytes, very low and stable background current and high resistance to surface fouling due to weak adsorption. These features endow the BDD electrode with potentially wide electrochemical applications, in such areas as wastewater treatment, electrosynthesis and electrochemical sensors. In this study, the characteristics of the BDD electrode were examined by scanning electron microscopy (SEM) and evaluated by accelerated life test. The effects of manufacturing conditions on the BDD electrode were determined and remedies for negative effects were noted in order to improve the electrode lifetime in wastewater treatment. The lifetime of the BDD electrode was influenced by manufacturing conditions, such as surface roughness, seeding method and rate of introduction of gases into the reaction chamber. The results of this study showed that BDD electrodes manufactured using sanding media of different sizes resulted in the most effective electrode lifetime when the particle size of alumina used was from $75{\sim}106{\mu}m$ (#150). Ultrasonic treatment was found to be more effective than polishing treatment in the test of seeding processes. In addition to this, BDD electrodes manufactured by introducing gases at different rates resulted in the most effective electrode lifetime when the introduced gas had a composition of hydrogen gas 94.5 vol.% carbon source gas 1.6 vol.% and boron source gas 3.9 vol.%.

HFCVD법을 이용한 대면적 BDD(Boron Doped Diamond) 전극 개발

  • 안나영;박철욱;이정희;이유기;최용선;이영기
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.168-168
    • /
    • 2016
  • BDD(Boron Doped Diamond) 전극은 전위창이 넓고, 다른 불용성 전극에 비해 산소발생과전압이 높아 물을 전기화학적인 방법으로 처리하는 영역에 있어 매우 효과적일 뿐만 아니라, 전통적인 불용성 전극에 비해 전극 표면에서 수산화 라디칼(-OH)과 오존(O3)의 발생량이 월등히 높아 수처리용 전극으로서의 유용성이 매우 높다. 따라서 BDD 전극을 수처리용 전극에 사용하는 경우 수산화 라디칼(-OH)과 오존(O3), 과산화수소(H2O2) 등과 같은 산화제의 생성은 물론이고, 염소(Cl2)가 포함되어 있는 전해액에서는 차아염소산(HOCl)이나 차아염소산이온(OCl-)과 같은 강력한 산화제가 발생되어 전기화학적 폐수처리, 전기화학적 정수처리, 선박평형수 처리 등의 분야에 널리 활용될 수 있다. 본 연구에서는 상온 및 상압에서 운전이 가능하고 난분해성 오염물질 제거 효과가 뛰어난 전기화학적 고도산화공정(Electrochemical Advanced Oxidation Process, EAOP)에 적합한 대면적의 BDD 전극을 개발하고 자 하였다. 이러한 BDD 전극의 성막 방법으로는 필라멘트 가열 CVD, 마이크로파 플라즈마 CVD, DC 플라즈마 CVD 등이 널리 알려져 있는데 최근에는 설비의 투자비가 비교적 저렴하고, 대면적의 기판처리가 용의한 필라멘트 가열 화학기상증착법(Hot Filament Chemical Vapor Deposition, HFCVD)이 상업적으로 각광을 받고 있다. 따라서 본 연구에서는 HFCVD 방법을 이용하여 반응 가스의 투입비율, BDD 박막의 두께, 기판의 재질 등에 따른 여러 가지 성막 조건들을 검토하여 $100{\times}100mm$ 이상의 대면적 BDD 전극을 개발하였다. Fig. 1은 본 연구를 통하여 얻어진 BDD 전극의 표면 및 단면 SEM이다.

  • PDF

Electrochemical Determination of Chemical Oxygen Demand Based on Boron-Doped Diamond Electrode

  • Dian S. Latifah;Subin Jeon;Ilwhan Oh
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.215-221
    • /
    • 2023
  • A rapid and environment-friendly electrochemical sensor to determine the chemical oxygen demand (COD) has been developed. The boron-doped diamond (BDD) thin-film electrode is employed as the anode, which fully oxidizes organic pollutants and provides a current response in proportion to the COD values of the sample solution. The BDD-based amperometric COD sensor is optimized in terms of the applied potential and the solution pH. At the optimized conditions, the COD sensor exhibits a linear range of 0 to 80 mg/L and the detection limit of 1.1 mg/L. Using a set of model organic compounds, the electrochemical COD sensor is compared with the conventional dichromate COD method. The result shows an excellent correlation between the two methods.

다양한 기판에 형성된 BDD 전극의 폐수처리 특성 (Performance of BDD Electrodes Prepared on Various Substrates for Wastewater Treatment)

  • 권종익;유미영;김서한;송풍근
    • 한국표면공학회지
    • /
    • 제52권2호
    • /
    • pp.53-57
    • /
    • 2019
  • Stability and activity of boron doped diamond (BDD) electrode are key factors for water treatment. In this study, BDD electrodes were prepared on various substrates such as Nb, Si, Ti, and $TiN_x/Ti$ by hot filament chemical vapor deposition (HFCVD) method. BDD/Ti film showed the delamination between BDD and Ti substrate due to the formation of TiC layer caused by diffusion of carbon. On the other hand, $BDD/TiN_x/Ti$ showed remarkably improved stability, compared to BDD/Ti. It was confirmed that $TiN_x$ intermediate layer act as barrier layer for diffusion of carbon. High potential window of 2.8 eV was maintained on the $BDD/TiN_x/Ti$ electrode and, better wastewater treatment capability and longer electrode working life than BDD/Nb, BDD/Si and BDD/Ti were obtained.

BDD 전극을 이용한 축산폐수 처리의 적용성 평가 (Evaluation of the Applicability of Livestock Wastewater Treatment using Boron-Doped Diamond (BDD) Electrodes)

  • 김현구;안대희
    • 한국환경과학회지
    • /
    • 제32권6호
    • /
    • pp.465-475
    • /
    • 2023
  • In this study, we evaluated the treatment efficiency of livestock wastewater by altering the current density using boron-doped diamond (BDD) electrodes. As the current density was adjusted from 10 to 35 mA/cm2, the removal efficiency of organic matter increased from 22.2 to 71.5%. Similar to that of organic matter, the removal efficiency of color increased with increasing current density up to 85.7%, indicating a higher removal efficiency for color than that of organic matter. The removal efficiency of ammonia nitrogen increased from 14.6 to 53.3% as the current density increased, but it was lower than that of organic matter. In addition, the removal of organic matter, color, and ammonia nitrogen followed first-order reactions, according to the reaction rate analysis. The energy consumption ranged from 4.87 to 8.33 kWh/kg COD, and it was found that the organic matter removal efficiency was more efficient at high current densities. Based on various analyses, the optimal current density was 20 mA/cm2, and the corresponding energy consumption was 6.824 kWh/kg COD.

아르곤 가스의 주입이 붕소 도핑 다이아몬드 전극의 특성에 미치는 효과 (Effect of Argon Addition on Properties of the Boron-Doped Diamond Electrode)

  • 최용선;이영기;김정열;이유기
    • 한국재료학회지
    • /
    • 제28권5호
    • /
    • pp.301-307
    • /
    • 2018
  • A boron-doped diamond(BDD) electrode is attractive for many electrochemical applications due to its distinctive properties: an extremely wide potential window in aqueous and non-aqueous electrolytes, a very low and stable background current and a high resistance to surface fouling. An Ar gas mixture of $H_2$, $CH_4$ and trimethylboron (TMB, 0.1 % $C_3H_9B$ in $H_2$) is used in a hot filament chemical vapor deposition(HFCVD) reactor. The effect of argon addition on quality, structure and electrochemical property is investigated by scanning electron microscope(SEM), X-ray diffraction(XRD) and cyclic voltammetry(CV). In this study, BDD electrodes are manufactured using different $Ar/CH_4$ ratios ($Ar/CH_4$ = 0, 1, 2 and 4). The results of this study show that the diamond grain size decreases with increasing $Ar/CH_4$ ratios. On the other hand, the samples with an $Ar/CH_4$ ratio above 5 fail to produce a BDD electrode. In addition, the BDD electrodes manufactured by introducing different $Ar/CH_4$ ratios result in the most inclined to (111) preferential growth when the $Ar/CH_4$ ratio is 2. It is also noted that the electrochemical properties of the BDD electrode improve with the process of adding argon.