• Title/Summary/Keyword: boron emitter

Search Result 26, Processing Time 0.022 seconds

Optimization of the Phosphorus Doped BSF Doping Profile and Formation Method for N-type Bifacial Solar Cells

  • Cui, Jian;Ahn, Shihyun;Balaji, Nagarajan;Park, Cheolmin;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.2
    • /
    • pp.31-41
    • /
    • 2016
  • n-type PERT (passivated emitter, rear totally diffused) bifacial solar cells with boron and phosphorus diffusion as p+ emitter and n+ BSF (back surface field) have attracted significant research interest recently. In this work, the influences of wafer thickness, bulk lifetime, emitter, BSF on the photovoltaic characteristics of solar cells are discussed. The performance of the solar cell is determined by using one-dimensional solar cell simulation software PC1D. The simulation results show that the key role of the BSF is to decrease the surface doping concentration reducing the recombination and thus, increasing the cell efficiency. A lightly phosphorus doped BSF (LD BSF) was experimentally optimized to get low surface dopant concentration for n type bifacial solar cells. Pre-oxidation combined with a multi-plateau drive-in, using limited source diffusion was carried out before pre-deposition. It could reduce the surface dopant concentration with minimal impact on the sheet resistance.

Design Optimization of the Front Side in n-Type TOPCon Solar Cell

  • Jeong, Sungjin;Kim, Hongrae;Kim, Sungheon;Dhungel, Suresh Kumar;Kim, Youngkuk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.616-621
    • /
    • 2022
  • Numerical simulation is a good way to predict the conversion efficiency of solar cells without a direct experimentation and to achieve low cost and high efficiency through optimizing each step of solar cell fabrication. TOPCon industrial solar cells fabricated with n-type silicon wafers on a larger area have achieved a higher efficiency than p-type TOPCon solar cells. Electrical and optical losses of the front surface are the main factors limiting the efficiency of the solar cell. In this work, an optimization of boron-doped emitter surface and front electrodes through numerical simulation using "Griddler" is reported. Through the analysis of the results of simulation, it was confirmed that the emitter sheet resistance of 150 Ω/sq along the front electrodes having a finger width of 20 ㎛, and the number of finger lines ~130 for silicon wafer of M6 size is an optimized technology for the front emitter surface of the n-type TOPCon solar cells that can be developed.

Synthesis of Hexagonal Boron Nitride Nanosheet by Diffusion of Ammonia Borane Through Ni Films

  • Lee, Seok-Gyeong;Lee, Gang-Hyeok;Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.252.1-252.1
    • /
    • 2013
  • Hexagonal boron nitride (h-BN) is a two dimensional material which has high band-gap, flatness and inert properties. This properties are used various applications such as dielectric for electronic device, protective coating and ultra violet emitter so on. 1) In this report, we were growing h-BN sheet directly on sapphire 2"wafer. Ammonia borane (H3BNH3) and nickel were deposited on sapphire wafer by evaporate method. We used nickel film as a sub catalyst to make h-BN sheet growth. 2) During annealing process, ammonia borane moved to sapphire surface through the nickel grain boundary. 3) Synthesized h-BN sheet was confirmed by raman spectroscopy (FWHM: ~30cm-1) and layered structure was defined by cross TEM (~10 layer). Also we controlled number of layer by using of different nickel and ammonia borane thickness. This nickel film supported h-BN growth method may propose fully and directly growing on sapphire. And using deposited ammonia borane and nickel films is scalable and controllable the thickness for h-BN layer number controlling.

  • PDF

The design and fabrication of n-type rear local emitter by calculation (N-type rear local emitter 태양전지의 시뮬레이션을 통한 구조 설계 및 제조)

  • Kim, Soo Min;Bae, Su Hyun;Kim, Seong Tak;Kim, Hyun Ho;Park, Hyo Min;Kim, Young Do;Park, Sungeun;Tark, Sung Ju;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.107.1-107.1
    • /
    • 2011
  • 현재 상용으로 많이 사용되는 p-type 태양전지는 Dopant로 사용된 Boron이 $O_2$와 결합하면서 Light induced degradation이 발생하여 태양 전지 효율의 감소를 불러일으키는 단점이 있다. 이러한 문제를 해결하기 위하여 여러 가지 방법들이 제시되었는데 일반적으로 n-type wafer를 이용함으로써 Light induced degradation을 해결하는 방법이 주로 사용된다. n-type 태양전지를 제조함에 있어서 보다 높은 효율을 달성하기 위하여 태양전지 후면 구조에 local contact 개념을 도입하여 rear local emitter를 형성함으로써 전체적인 효율 증가를 도모하였다. 이러한 local contact을 제조하기 위해서는 전기적으로 구조적으로 고려할 사항들이 여러 가지 존재한다. 따라서 우리는 이러한 고려 사항들을 실험적인 방법으로 결정하는 것이 아니라, 정교한 변수 통제를 이용한 시뮬레이션으로 최종적인 효율 상승을 가져오는 조건을 찾으려고 한다. 이때 사용될 수 있는 시뮬레이션은 여러 가지 종류가 존재하는데 우선 상용 태양전지의 해석에 가장 많이 사용되는 PC1D프로그램이 있다. 그러나 PC1D의 경우에는 1차원의 해석만 가능하기 때문에 local contact의 2차원 이상의 구조 변화에 따른 최종적인 효율을 계산하는데 무리가 따르게 된다. 따라서 2차원 이상의 형상에 대한 분석이 가능한 프로그램을 이용하여 실제 셀에서 일어나는 현상을 더 정밀하게 모사함으로써 local contact에서 일어나는 전기적, 구조적 변화가 최종적인 효율에 어떻게 영향을 미치는지를 파악해볼 것이며, 어떤 구조를 선택하였을 때 가장 높은 효율을 달성할 수 있는지 알아보려고 한다.

  • PDF

Fabrication and characterization of the SiGe HBTs using an RPCVD (RPCVD를 이용한 실리콘 게르마늄 이종 접합 바이폴라 트랜지스터 제작 및 특성 분석)

  • 한태현;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.823-829
    • /
    • 2004
  • In this paper, non-self-aligned SiGe HBTs with ${f}_\tau$ and${f}_max $above 50 GHz have been fabricated using an RPCVD(Reduced Pressure Chemical Vapor Deposition) system for wireless applications. In the proposed structure, in-situ boron doped selective epitaxial growth(BDSEG) and TiSi$_2$ were used for the base electrode to reduce base resistance and in-situ phosphorus doped polysilicon was used for the emitter electrode to reduce emitter resistance. SiGe base profiles and collector design methodology to increase ${f}_\tau$ and${f}_max $ are discussed in detail. Two SiGe HBTs with the collector-emitter breakdown voltages ${BV}_CEO$ of 3 V and 6 V were fabricated using SIC(selective ion-implanted collector) implantation. Fabricated SiGe HBTs have a current gain of 265 ∼ 285 and Early voltage of 102 ∼ 120 V, respectively. For the $1\times{8}_\mu{m}^2$ emitter, a SiGe HBT with ${BV}_CEO$= 6 V shows a cut-off frequency, ${f}_\tau$of 24.3 GHz and a maximum oscillation frequency, ${f}_max $of 47.6 GHz at $I_c$of 3.7 mA and$V_CE$ of 4 V. A SiGe HBT with ${BV}_CEO$ = 3 V shows ${f}_\tau$of 50.8 GHz and ${f}_max $ of 52.2 GHz at $I_c$ of 14.7 mA and $V_CE$ of 2 V.

보론 에미터를 이용한 n-type 결정질 실리콘 태양전지 특성

  • Kim, Chan-Seok;Tak, Seong-Ju;Park, Seong-Eun;Kim, Yeong-Do;Park, Hyo-Min;Kim, Seong-Tak;Kim, Hyeon-Ho;Bae, Su-Hyeon;Kim, Dong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.99.2-99.2
    • /
    • 2012
  • 현재 양산 중인 대부분의 결정질 실리콘 태양전지는 p-type 실리콘 기판의 전면에 인 (phosphorus) 을 확산시켜 에미터로 사용한 스크린 프린티드 태양전지 (Screen Printed Solar Cells) 이다. 위 태양전지의 단점은 p-type 기판의 광열화현상 (Light Induced Degradation) 문제와 후면 알루미늄 금속 전극으로 인한 휨 현상 등이 있다. 이러한 단점을 해결하기 위해 n-type 기판의 전면에 보론 (Boron) 을 도핑하여 에미터로 사용하고, 후면 전계 (Back Surface Field) 로 인 (Phosphorus)을 도핑한 태양전지에 대한 연구가 활발히 진행 중이다. 본 연구에서는, 튜브 전기로 (tube furnace) 를 이용해 n-type 실리콘 웨이퍼 전면에 보론 도핑을 하고 이와 마찬가지로 웨이퍼 후면에 인 도핑을 실시하였다. 그리고 전면과 후면의 패시베이션을 위해 얇게 산화막을 형성한 후 실리콘 질화막 (SiNx) 을 증착하였다. 에미터와 후면 전계 그리고 패시베이션 층의 특성을 평가하기 위해 QSSPC (Quasi-Steady-State PhotoConductance) 로 소수반송자 수명 (Minority Carrier Lifetime) 과 포화 전류 (Saturation current) 값을 측정하였다.

  • PDF

Controlled Synthesis of Hexagonal Boron Nitride on Cu Foil Using Chemical Vapor Deposition

  • Han, Jaehyun;Lee, Jun-Young;Kwon, Heemin;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.630-630
    • /
    • 2013
  • Recently, atomically smooth hexagonal boron nitride(h-BN) known as a white graphene has drawn great attention since the discovery of graphene. h-BN is a III-V compound and has a honeycomb structure very similar to graphene with smaller lattice mismatch. Because of strong covalent sp2bonds like graphene, h-BN provides a high thermal conductivity and mechanical strength as well as chemical stability of h-BN superior to graphene. While graphene has a high electrical conductivity, h-BN has a highly dielectric property as an insulator with optical band gap up to 6eV. Similar to the graphene, h-BN can be applied to a variety of field, such as gate dielectric layers/substrate, ultraviolet emitter, transparent membrane, and protective coatings. However, up until recently, obtaining and controlling good quality monolayer h-BN layers have been too difficult and challenging. In this work, we investigate the controlled synthesis of h-BN layers according to the growth condition, time, temperature, and gas partial pressure. h-BN is obtained by using chemical vapor deposition on Cu foil with ammonia borane (BH3NH3) as a source for h-BN. Scanning Transmission Electron Microscopy (STEM, JEOL-JEM-ARM200F) is used for imaging and structural analysis of h-BN layer. Sample's surface morphology is characterized by Field emission scanning electron microscopy (SEM, JEOL JSM-7100F). h-BN is analyzed by Raman spectroscopy (HORIBA, ARAMIS) and its topographic variations by Atomic force microscopy (AFM, Park Systems XE-100).

  • PDF

$^1$Highly-crystalline $sp^3$-bonded 5H-BN prepared by plasma-packets assisted pulsed-laser deposition: a room-temperature UV light-emitter at 225nm

  • Komatsu, Shojiro
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.6-6
    • /
    • 2003
  • Highly crystalline 5H-polytypic form of sp3-bonded boron nitride (BN) was grown by pulsed-laser-vaporization of BN, where synchronous reactive-plasma packets assisted the crystal growth in the vapor phase. The structure of the product crystallites (˙5 micrometers) was confirmed by using transmission electron diffraction and electron energy loss spectroscopy. This material proved to have a sharp and dominant band at 225 nm by cathode luminescence at room temperatures and corresponding monochromatic images revealed that they uniformly emitted the ultraviolet light. Considering that cubic BN has already been doped as p- and n- type semiconductors, this material may be applied to the light-emitting devices working at almost the deepest limit of the UV region that is functional without vacuum.

  • PDF

Degradation of the SiGe hetero-junction bipolar transistor in SiGe BiCMOS process (실리콘-게르마늄 바이시모스 공정에서의 실리콘-게르마늄 이종접합 바이폴라 트랜지스터 열화 현상)

  • Kim Sang-Hoon;Lee Seung-Yun;Park Chan-Woo;Kang Jin-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • The degradation of the SiGe hetero-junction bipolar transistor(HBT) properties in SiGe BiCMOS process was investigated in this paper. The SiGe HBT prepaired by SiGe BiCMOS process, unlike the conventional one, showed the degraded DC characteristics such as the decreased Early voltage, the decreased collector-emitter breakdown voltage, and the highly increased base leakage current. Also, the cutoff frequency(f/sub T/) and the maximum oscillation frequency(f/sub max/) representing the AC characteristics are reduced to below 50%. These deteriorations are originated from the change of the locations of emitter-base and collector-base junctions, which is induced by the variation of the doping profile of boron in the SiGe base due to the high-temperature source-drain annealing. In the result, the junctions pushed out of SiGe region caused the parastic barrier formation and the current gain decrease on the SiGe HBT device.

Integrated Thyristor Switch Structures for Capacitor Discharge Application

  • Kim, Eun-Dong;Zhang, Chang-Li;Kim, Sang-Cheol;Baek, Do-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.22-25
    • /
    • 2001
  • A thyristor switch circuit for capacitor discharge application, of which the equivalent circuit includes a resistor between cathode and gate of a reverse-conducting thyristor and an avalanche diode anti-parallel between its anode and gate to set thyristor tum-on voltage, is monolithically integrated by planar process with AVE double-implantation method. To ensure a lower breakdown voltage of the avalanche diode for thyristor tum-on than the break-over voltage of the thyristor, $p^+$ wells on thyristor p base layer are made by boron implantation/drive-in for a steeper doping profile with higher concentrations while rest p layers of thyristor and free-wheeling diode parts are formed with Al implantation/drive-in for a doping profile of lower steepness. The free-wheeling diode part is isolated from the thyristor part by formation of separated p-well emitter for suppressing commutation between them, which is achieved during the formation of thyristor p-base layer.

  • PDF