• Title/Summary/Keyword: bootstrap circuit

Search Result 16, Processing Time 0.021 seconds

Design of High-Gain OP AMP Input Stage Using GaAs MESFETs (갈륨비소 MESFET를 이용한 고이득 연산 증폭기의 입력단 설계)

  • 김학선;김은노;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.68-79
    • /
    • 1992
  • In the high speed analog system satellite communication system, video signal processing and optical fiber interface circuits, GaAs high gain operational amplifier is advantageous due to obtain a high gain because of its low transconductance and other drawbacks, such as low frequency dispersion and process variation. Therefore in this paper, a circuit techniques for improving the voltage gain for GaAs MESFET amplifier is presented. Also, various types of existing current mirror and current mirror proposed are compared.To obtain the high differential gain, bootstrap gain enhancement technique is used and common mode feedback is employed in differential amplifier.The simulation results show that gain is higher than that of basic amplifier about 18.6dB, and stability and frequency performance of differential amplifier are much improved.

  • PDF

Design of High Gain Differential Amplifier Using GaAs MESFET's (갈륨비소 MESFET를 이용한 고이득 차동 증폭기 설계)

  • 최병하;김학선;김은로;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.8
    • /
    • pp.867-880
    • /
    • 1992
  • In this paper, a circuit design techniques for Improving the voltage gain of the GaAs MESFET single amplifier is presented. Also, various types of existing current mirror and proposed current mirror of new configuration are compared. To obtain the high differential mode gain and low common mode gain, bootstrap gain enhancement technique Is used and common mode feedback Is employed In the design of differential amplifier. The simulation results show that designed differential amplifier has differential gain of 57.66dB, unity gain frequency of 23.25GHz. Also, differential amplifier using common mode feedback with alternative negative current mirror has CMRR of 83.S8dB, stew rate of 3500 V /\ulcorners.

  • PDF

Phase-Shift Full-Bridge DC-DC Converter using the One-Chip Micom (단일칩 마이컴을 이용한 위상변위 방식 풀브리지 직류-직류 전력변환기)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.517-527
    • /
    • 2021
  • This paper presents the phase-shift full-bridge DC-DC converter using the one-chip micom. The proposed converter primary is the full-bridge power topology that operates with the unipolar pulse-width modulation (PWM) by the phase-shift method, and the secondary is the full-bridge full-wave rectifier composed of four diodes. The control of proposed converter is performed by the one-chip micom and its MOSFET switches are driven by the bootstrap circuit. Thus the total system of proposed converter is simple. The proposed converter achieves high-efficiency using the resonant circuit and blocking capacitor. In this paper, first, the power-circuit operation of proposed converter is explained according to each operation mode. And the power-circuit design method of proposed converter is shown, and the software control algorithm on the micom and the feedback and switch drive circuits operating the proposed converter are described, briefly. Then, the operation characteristics of proposed converter are validated through the experimental results of a designed and implemented prototype converter by the shown design and implementation method in this paper. The highest efficiency in the results was about 92%.

Design of MOSFET-Controlled FED integrated with driver circuits

  • Lee, Jong-Duk;Nam, Jung-Hyun;Kim, Il-Hwan
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.3 no.1
    • /
    • pp.66-73
    • /
    • 1999
  • In this paper, the design of one-chip FED system integrated with driving circuits in reported on the basis of MOSFET controlled FEA (MCFEA). To integrate a MOSFET with a FEA efficiently, a new fabrication process is proposed. It is confirmed that the MOSFET with threshold voltage of about 2volts controls the FEA emission current up to 20 ${\mu}$A by applying driving voltage of 15 volts, which is enough current level to utilize the MCFEA as a pixel for FED. The drain breakdown voltage of the MOSFET is measured to be 70 volts, which is also high enough for 60 volt operation of FED. The circuits for row and column driver are designed stressing on saving area, reducing malfunction probability and consuming low power to maximize the merit of on-chip driving circuits. Dynamic logic concept and bootstrap capacitors are used to meet these requirements. By integrating the driving circuit with FEA, the number of external I/O lines can be less than 20, irrespectively of the number of pixels.

  • PDF

A PWM strategy for low speed operation of three-level NPC inverter based on bootstrap gate drive circuit (부트스트랩 회로를 적용한 3-레벨 NPC 인버터의 저속 운전을 위한 PWM 스위칭 전략)

  • Jung, Jun-Hyung;Im, Won-Sang;Ku, Hyun-Keun;Kim, Jang-Mok
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.112-113
    • /
    • 2013
  • 본 논문에서는 부트스트랩 게이트 드라이브 회로가 적용된 3-레벨 NPC 인버터의 전동기 저속 운전에 적용하기 위한 PWM 스위칭 전략을 제안한다. 3-레벨 NPC 인버터를 이용하여 전동기를 제어할 경우, 일반적으로 구현의 편리성 때문에 CBPWM이 주로 사용된다. CBPWM 중 Unipolar 방법이 주로 사용되지만 부트스트랩 회로를 적용한 3-레벨 NPC 인버터의 전동기 저속 운전 시 부트스트랩 캐패시터 방전에 의한 전압 감소 크기가 증가한다. 캐패시터 전압이 정상적인 인버터 동작을 위한 한계 전압 이하로 감소하면 정상적인 제어는 불가능하다. 따라서 본 논문에서는 부트스트랩 회로가 적용된 3-레벨 NPC 인버터의 전동기 저속 운전에 적용하기 위한 PWM 스위칭 전략에 대해 제안 하였으며 시뮬레이션을 통하여 그 타당성을 증명하였다.

  • PDF

High Efficiency Resonant Flyback Converter using a Single-Chip Microcontroller (싱글칩 마이크로컨트롤러를 이용한 고효율 공진형 플라이백 전력변환기)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.803-813
    • /
    • 2020
  • This paper presents a high efficiency resonant flyback converter using a single-chip microcontroller. The proposed converter primary performs the resonant switching by applying the asymmetrical pulse-width modulation (APWM) to the half-bridge power topology. And the converter secondary uses the diode flyback rectifier as its power topology and operates with the zero current switching (ZCS). Thus the proposed converter achieves high efficiency. The total structure of proposed converter is very simple because it uses a single-chip microcontroller and bootstrap circuit for its control and drive, respectively. First, this paper describes the converter operation according to each operation mode and shows its steady-state analysis. And the software control algorithm and drive circuits operating the proposed converter are explained. Then, the operation characteristics of proposed converter are shown through the experimental results of an implemented prototype based on each explanation.