• Title/Summary/Keyword: boosting algorithm

Search Result 173, Processing Time 0.028 seconds

Scaling Reuse Detection in the Web through Two-way Boosting with Signatures and LSH

  • Kim, Jong Wook
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.6
    • /
    • pp.735-745
    • /
    • 2013
  • The emergence of Web 2.0 technologies, such as blogs and wiki, enable even naive users to easily create and share content on the Web using freely available content sharing tools. Wide availability of almost free data and promiscuous sharing of content through social networking platforms created a content borrowing phenomenon, where the same content appears (in many cases in the form of extensive quotations) in different outlets. An immediate side effect of this phenomenon is that identifying which content is re-used by whom is becoming a critical tool in social network analysis, including expert identification and analysis of information flow. Internet-scale reuse detection, however, poses extremely challenging scalability issues: considering the large size of user created data on the web, it is essential that the techniques developed for content-reuse detection should be fast and scalable. Thus, in this paper, we propose a $qSign_{lsh}$ algorithm, a mechanism for identifying multi-sentence content reuse among documents by efficiently combining sentence-level evidences. The experiment results show that $qSign_{lsh}$ significantly improves the reuse detection speed and provides high recall.

Optimization of Domain-Independent Classification Framework for Mood Classification

  • Choi, Sung-Pil;Jung, Yu-Chul;Myaeng, Sung-Hyon
    • Journal of Information Processing Systems
    • /
    • v.3 no.2
    • /
    • pp.73-81
    • /
    • 2007
  • In this paper, we introduce a domain-independent classification framework based on both k-nearest neighbor and Naive Bayesian classification algorithms. The architecture of our system is simple and modularized in that each sub-module of the system could be changed or improved efficiently. Moreover, it provides various feature selection mechanisms to be applied to optimize the general-purpose classifiers for a specific domain. As for the enhanced classification performance, our system provides conditional probability boosting (CPB) mechanism which could be used in various domains. In the mood classification domain, our optimized framework using the CPB algorithm showed 1% of improvement in precision and 2% in recall compared with the baseline.

A review of tree-based Bayesian methods

  • Linero, Antonio R.
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.543-559
    • /
    • 2017
  • Tree-based regression and classification ensembles form a standard part of the data-science toolkit. Many commonly used methods take an algorithmic view, proposing greedy methods for constructing decision trees; examples include the classification and regression trees algorithm, boosted decision trees, and random forests. Recent history has seen a surge of interest in Bayesian techniques for constructing decision tree ensembles, with these methods frequently outperforming their algorithmic counterparts. The goal of this article is to survey the landscape surrounding Bayesian decision tree methods, and to discuss recent modeling and computational developments. We provide connections between Bayesian tree-based methods and existing machine learning techniques, and outline several recent theoretical developments establishing frequentist consistency and rates of convergence for the posterior distribution. The methodology we present is applicable for a wide variety of statistical tasks including regression, classification, modeling of count data, and many others. We illustrate the methodology on both simulated and real datasets.

A Comparative Study of Phishing Websites Classification Based on Classifier Ensembles

  • Tama, Bayu Adhi;Rhee, Kyung-Hyune
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • Phishing website has become a crucial concern in cyber security applications. It is performed by fraudulently deceiving users with the aim of obtaining their sensitive information such as bank account information, credit card, username, and password. The threat has led to huge losses to online retailers, e-business platform, financial institutions, and to name but a few. One way to build anti-phishing detection mechanism is to construct classification algorithm based on machine learning techniques. The objective of this paper is to compare different classifier ensemble approaches, i.e. random forest, rotation forest, gradient boosted machine, and extreme gradient boosting against single classifiers, i.e. decision tree, classification and regression tree, and credal decision tree in the case of website phishing. Area under ROC curve (AUC) is employed as a performance metric, whilst statistical tests are used as baseline indicator of significance evaluation among classifiers. The paper contributes the existing literature on making a benchmark of classifier ensembles for web phishing detection.

Bankruptcy Prediction with Explainable Artificial Intelligence for Early-Stage Business Models

  • Tuguldur Enkhtuya;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2023
  • Bankruptcy is a significant risk for start-up companies, but with the help of cutting-edge artificial intelligence technology, we can now predict bankruptcy with detailed explanations. In this paper, we implemented the Category Boosting algorithm following data cleaning and editing using OpenRefine. We further explained our model using the Shapash library, incorporating domain knowledge. By leveraging the 5C's credit domain knowledge, financial analysts in banks or investors can utilize the detailed results provided by our model to enhance their decision-making processes, even without extensive knowledge about AI. This empowers investors to identify potential bankruptcy risks in their business models, enabling them to make necessary improvements or reconsider their ventures before proceeding. As a result, our model serves as a "glass-box" model, allowing end-users to understand which specific financial indicators contribute to the prediction of bankruptcy. This transparency enhances trust and provides valuable insights for decision-makers in mitigating bankruptcy risks.

Credit Card Fraud Detection based on Boosting Algorithm (부스팅 알고리즘 기반 신용 카드 이상 거래 탐지)

  • Lee Harang;Kim Shin;Yoon Kyoungro
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.621-623
    • /
    • 2023
  • 전자금융거래 시장이 활발해지며 이에 따라 신용 카드 이상 거래가 증가하고 있다. 따라서 많은 금융 기관은 신용 카드 이상 거래 탐지 시스템을 사용하여 신용 카드 이상 거래를 탐지하고 개인 피해를 줄이는 등 소비자를 보호하기 위해 큰 노력을 하고 있으며, 이에 따라 높은 정확도로 신용 카드 이상 거래를 탐지할 수 있는 실시간 자동화 시스템에 대한 개발이 요구되었다. 이에 본 논문에서는 머신러닝 기법 중 부스팅 알고리즘을 사용하여 더욱 정확한 신용 카드 이상 거래 탐지 시스템을 제안하고자 한다. XGBoost, LightGBM, CatBoost 부스팅 알고리즘을 사용하여 보다 정확한 신용 카드 이상 거래 탐지 시스템을 개발하였으며, 실험 결과 평균적으로 정밀도 99.95%, 재현율 99.99%, F1-스코어 99.97%를 취득하여 높은 신용 카드 이상 거래 탐지 성능을 보여주는 것을 확인하였다.

A Study on Smoker Prediction Using Machine Learning Algorithm (기계학습 알고리즘을 이용한 흡연자 예측 연구)

  • Jongwoo Baek;Joonil Bang;Joowon Lee;Hwajong Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.537-538
    • /
    • 2023
  • 본 논문에서는 사람에게서 나타나는 생체 특성과 흡연여부의 상관관계 분석을 위해 랜덤 포레스트와 그래디언트 부스팅 트리의 두 가지 기계학습 알고리즘을 사용하였다. 연구에 사용된 데이터는 국민건강보험공단에서 제공하고 Kaggle에서 취합하여 정리한 건강검진 정보를 사용하였다. 분류 모델의 학습에 있어 혈청 정보가 높은 관계성을 보일 것으로 예상하였으나, 실제 결과는 성별이 가장 큰 영향을 끼치는 것으로 확인되었다.

  • PDF

Comparative studies of different machine learning algorithms in predicting the compressive strength of geopolymer concrete

  • Sagar Paruthi;Ibadur Rahman;Asif Husain
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.607-613
    • /
    • 2023
  • The objective of this work is to determine the compressive strength of geopolymer concrete utilizing four distinct machine learning approaches. These techniques are known as gradient boosting machine (GBM), generalized linear model (GLM), extremely randomized trees (XRT), and deep learning (DL). Experimentation is performed to collect the data that is then utilized for training the models. Compressive strength is the response variable, whereas curing days, curing temperature, silica fume, and nanosilica concentration are the different input parameters that are taken into consideration. Several kinds of errors, including root mean square error (RMSE), coefficient of correlation (CC), variance account for (VAF), RMSE to observation's standard deviation ratio (RSR), and Nash-Sutcliffe effectiveness (NSE), were computed to determine the effectiveness of each algorithm. It was observed that, among all the models that were investigated, the GBM is the surrogate model that can predict the compressive strength of the geopolymer concrete with the highest degree of precision.

Face Detection Based on Incremental Learning from Very Large Size Training Data (대용량 훈련 데이타의 점진적 학습에 기반한 얼굴 검출 방법)

  • 박지영;이준호
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.949-958
    • /
    • 2004
  • race detection using a boosting based algorithm requires a very large size of face and nonface data. In addition, the fact that there always occurs a need for adding additional training data for better detection rates demands an efficient incremental teaming algorithm. In the design of incremental teaming based classifiers, the final classifier should represent the characteristics of the entire training dataset. Conventional methods have a critical problem in combining intermediate classifiers that weight updates depend solely on the performance of individual dataset. In this paper, for the purpose of application to face detection, we present a new method to combine an intermediate classifier with previously acquired ones in an optimal manner. Our algorithm creates a validation set by incrementally adding sampled instances from each dataset to represent the entire training data. The weight of each classifier is determined based on its performance on the validation set. This approach guarantees that the resulting final classifier is teamed by the entire training dataset. Experimental results show that the classifier trained by the proposed algorithm performs better than by AdaBoost which operates in batch mode, as well as by ${Learn}^{++}$.

Calibration of Portable Particulate Mattere-Monitoring Device using Web Query and Machine Learning

  • Loh, Byoung Gook;Choi, Gi Heung
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.452-460
    • /
    • 2019
  • Background: Monitoring and control of PM2.5 are being recognized as key to address health issues attributed to PM2.5. Availability of low-cost PM2.5 sensors made it possible to introduce a number of portable PM2.5 monitors based on light scattering to the consumer market at an affordable price. Accuracy of light scatteringe-based PM2.5 monitors significantly depends on the method of calibration. Static calibration curve is used as the most popular calibration method for low-cost PM2.5 sensors particularly because of ease of application. Drawback in this approach is, however, the lack of accuracy. Methods: This study discussed the calibration of a low-cost PM2.5-monitoring device (PMD) to improve the accuracy and reliability for practical use. The proposed method is based on construction of the PM2.5 sensor network using Message Queuing Telemetry Transport (MQTT) protocol and web query of reference measurement data available at government-authorized PM monitoring station (GAMS) in the republic of Korea. Four machine learning (ML) algorithms such as support vector machine, k-nearest neighbors, random forest, and extreme gradient boosting were used as regression models to calibrate the PMD measurements of PM2.5. Performance of each ML algorithm was evaluated using stratified K-fold cross-validation, and a linear regression model was used as a reference. Results: Based on the performance of ML algorithms used, regression of the output of the PMD to PM2.5 concentrations data available from the GAMS through web query was effective. The extreme gradient boosting algorithm showed the best performance with a mean coefficient of determination (R2) of 0.78 and standard error of 5.0 ㎍/㎥, corresponding to 8% increase in R2 and 12% decrease in root mean square error in comparison with the linear regression model. Minimum 100 hours of calibration period was found required to calibrate the PMD to its full capacity. Calibration method proposed poses a limitation on the location of the PMD being in the vicinity of the GAMS. As the number of the PMD participating in the sensor network increases, however, calibrated PMDs can be used as reference devices to nearby PMDs that require calibration, forming a calibration chain through MQTT protocol. Conclusions: Calibration of a low-cost PMD, which is based on construction of PM2.5 sensor network using MQTT protocol and web query of reference measurement data available at a GAMS, significantly improves the accuracy and reliability of a PMD, thereby making practical use of the low-cost PMD possible.