• 제목/요약/키워드: booming noise

검색결과 74건 처리시간 0.019초

구조-음향 연성해석을 통한 모형차실 모델의 소음저감 기술연구 (Noise reduction of a vehicle acoustic cavity sample using coupled Structural-Acoustic element analysis)

  • 김태정;강성종;서정범
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1994년도 추계학술대회논문집; 한국종합전시장, 18 Nov. 1994
    • /
    • pp.288-294
    • /
    • 1994
  • A study of prediction and qualification techniques for structure borne booming noise is presented in this paper. Result from acoustic normal mode finite element analysis of a 1/2 size vehicle cavity sample model is compared to the that from an experiment. Coupled structural-acoustic analysis is performed on a 1/4 size vehicle cavity sample model surrounded by 2 mm thick normal steel plates. Interior noise levels around passensger's ear position are predicted and reduced by structural modification based on panel participation factor analysis about the sample cavity model. Futhermore, optimization technique in application of anti-vibration pad is studied.

  • PDF

구동축과 연관된 차량의 부밍 소음 저감을 위한 중공축 개발 기법 (Development Technique of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior Caused by Drive Shaft)

  • 고강호;최현준;김영호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.187-193
    • /
    • 2000
  • In order to reduce the booming noise caused by first bending mode of drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of drive shaft and applying the boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model for a shaft attached in vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft can be proposed at the early stage of design.

  • PDF

승용차의 도로면 소음 평가를 위한 시험절차 고찰 (A Test Procedure for Road Noise Evaluation)

  • 조영호;고강호;허승진;국형석;김찬묵;기지현;최윤봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.980-985
    • /
    • 2002
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual loading and find noise sources very easily. finally, the transfer function analysis is used to identify noise paths through the chassis system. However, all of the tests above mentioned must be performed to evaluate road booming noise. The objectives and the procedures of the tests are described in this paper. Also, the guideline for efficient road noise evaluation test can be found.

  • PDF

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

EVALUATION OF ROAD-INDUCED NOISE OF A VEHICLE USING EXPERIMENTAL APPROACH

  • Ko, K.-H.;Heo, J.-J.;Kook, H.
    • International Journal of Automotive Technology
    • /
    • 제4권1호
    • /
    • pp.21-30
    • /
    • 2003
  • In this paper a systematic test procedure for evaluation of road-induced noise of a vehicle and guidelines for each test are presented. Also, a practical application of the test procedure to a small SUV is presented. According to the test procedure, all the tests were performed to evaluate road-induced booming noise that is in low frequency range. First of all the information on characteristics of road-induced noise was obtained through baseline test. Coupling effects between body structure and acoustic cavity of a compartment were obtained by means of modal tests for a structure and an acoustic cavity. Local stiffness of joint areas between chassis system and car-body was determined by test for measurement of input point inertance. Noise sensitivities of body joints to operational forces were obtained through test for measurement of noise transfer functions. Operational deflection shapes made us analyze behaviors of chassis system under running condition and then find sources of noise due to resonance of the chassis system. Finally, Principal Component Analysis and Transfer Path Analysis were utilized to investigate main paths of road-induced noise. In order to evaluate road-induced booming noise exactly, all of tests mentioned above should be performed systematically.

엔진 가진력의 감도해석을 이용한 차실 소음 저감에 관한 연구 (A Study on the Noise Reduction of Compartment of Vehicle Using Sensitivity Analysis of Engine Exciting Force)

  • 오재응;김태욱;송재은;이해승
    • 한국자동차공학회논문집
    • /
    • 제5권4호
    • /
    • pp.171-178
    • /
    • 1997
  • Vehicle interior noise has become increasingly important in this recent years. The noise of a vehicle is one of the important problems in a vehicle design. The interior noise is caused by various vibration sources of vehicle compartment. The booming noise of a vehicle can be significantly affected by vibrations transmitted from engine excitation forces to the vehicle body. Specially, we are interested in the state of transmission paths such as engine mounts to reduce noise in a vehicle compartment. In this paper, we have been calculated the contribution of each transmission path such as engine mounts to interior noise. To identify contribution of each input sources and transmission paths to output, the effectiveness of each input component to output is calculated. Sensitivity analysis is carried out for investigation of contribution to output due to input variations. With the simulation of magnitude and phase change of inputs using vector synthesis diagram, the trends of synthesized output vector are obtained. As a result, we suggested sensitivity analysis of vector synthesis as a technique of prediction and control for noise in a vehicle compartment.

  • PDF

진동 파워흐름 측정을 통한 SUV용 엔진 마운트의 에너지 전달 기여도 분석에 관한 연구 (A Study on the Transmitted Energy Contribution Analysis of SUV Engine Mount by Vibration Power Flow Measurement)

  • 김수곤;이상권;김성종
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.400-410
    • /
    • 2008
  • Reduction of structure-borne noise in the compartment of a car is an important task in automotive engineering. Many methods which analyze noise transfer path have been generally used for structure-borne noise. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation for each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow measurement has been used for a simple isolation system or a laboratory based isolation system. This paper identifies the transfer path of booming noise in a SUV. The powertrain used for test has a in-line 4cylinder engine and 5-shift auto-transmission. This powertrain is transversely supported by four isolators. We calculated the energy flow throughout four isolator by the measurement of power flow and the contribution of energy flow at each isolator.

공기저항과 미기압파 저감을 위한 고속전철 전두부형상의 최적화설계 (Nose Shape Optimization of the High-speed Train to Reduce the Aerodynamic drag and Micro-pressure Wave)

  • 권혁빈;김유신;이동호;김문상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.373-379
    • /
    • 2001
  • When a train runs into a tunnel at high-speed, aerodynamic drag suddenly increases and the booming noise is generated at the exit of tunnel. The noise shape is very important to reduce the aerodynamic drag in tunnel as well as on open ground, and the micro-pressure wave that is a source of booming noise is dependent on nose shape, especially on area distribution. In this study, the nose shape has been optimized employing the response surface methodology and the axi-symmetric compressible Navier-Stokes equations. The optimal designs have been executed imposing various conditions of the aerodynamic drag and the micro-pressure wave on object functions. The results show that the multi-objective design was successful to decrease micro-pressure wave and aerodynamic drag of trains.

  • PDF

승용차 브랜드 사운드를 위한 이차원 음질 인덱스 개발 (New Development of Two-Dimensional Sound Quality Index for Brand sound in Passenger Cars)

  • 조병옥;이상권;박동철;이민섭;정승균
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계 학술대회논문집(수송기계편)
    • /
    • pp.174-179
    • /
    • 2005
  • In automotive engineering, the brand sound is one of the important advantage strategy in a car company. For the design of brand sound, the selection of descriptive word for a car sound is one of major works in automotive sound quality research. In paper, booming sound and rumbling sound, which are professional words used by NVH engineers are used for the design of brand sound. We employed sound metrics which are the subjective parameter used in psychoacoustics. According to most research results, the relationship between subjective evaluations and sound metrics has nonlinear characteristics and is very complex. In order to link these subjective evaluations to sound metrics, the artificial neural network technology has been applied to two-dimensional sound quality index for a passenger car. These indexes is used for 46 passenger cars, which are samples of famous cars in the world. Also the preference in car sounds is evaluated by the trained NVH engineers. We coupled this preference with booming and rumbling sounds by using artificial neural network. In future, the two -dimensional sound index and preference index are very useful fur the development of brand sound in passenger cars.

  • PDF

승용차 브랜드 사운드를 위한 이차원 음질 인덱스 개발 (New Development of Two-dimensional Sound Quality Index for Brand Sound in Passenger Cars)

  • 조병옥;박동철;이민섭;정승균;이상권
    • 한국소음진동공학회논문집
    • /
    • 제16권5호
    • /
    • pp.457-469
    • /
    • 2006
  • In automotive engineering, the brand sound is one of the important advantage strategies in a car company. For the design of brand sound, the selection of descriptive word for a car sound is one of major works in automotive sound quality research. In this paper, booming and rumbling sound, which are professional words used by sound and vibration engineers are used for the design of brand sound. We employed sound quality metrics, which are used in the psychoacoustics. By most research results, the relationship between subjective evaluations and sound quality metrics has nonlinear characteristics. In order to correlate these subjective evaluations with sound quality metrics, the artificial neural network technology has been applied to two-dimensional sound quality index for a passenger car. These indexes are used for 46 passenger cars, which are samples of the famous cars around the world. Also a preference evaluation for car sound was carried out by sound and vibration engineers. We coupled this preference with booming and rumbling sounds by using artificial neural network. In future, the two dimensional sound and preference index will be very useful to develop brand sound in passenger cars.