• Title/Summary/Keyword: bonegraft material

Search Result 1, Processing Time 0.016 seconds

THE EFFECT OF CALCIUM SULFATE WITH CALCIUM CARBONATE GRAFT AND CALCIUM SULFATE BARRIER ON THE HEAUNGOF 3-WALL INTRABONY DEFECTS IN DOGS (성견 3면 골내낭에서 calcium sulfate를 calcium carbonate와 혼합이식 및 차단막으로 사용시 치주조직의 치유효과)

  • Jeong, Yu-Seon;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.605-624
    • /
    • 1996
  • Various bonegraft materials and the technique of guided tissue regeneration have been used to regenerate lost periodontal tissue. Calcium sulfate has been known as a bone graft material because of good biocompatibility, rapid resorption and effective osteoinduction. It has been known that calcium sulfate works as a binder to stabilize the defect when it is used with synthetic graft materials. The effects on the regeneration of pericxiontal tissue were studied in dogs after grafting 3-wall intrabony defects with calcium carbonate and calcium sulfate and covering with calcium sulfate barrier. The 3-wall intrabony defectstdmm width, 4mm depth, 4mm length) were created in anterior area and treated with flap operation alone(contol group), with porous resorbable calcium carbonate graft alonetexperirnental group 1), with calcium sulfate graft alonetexperimental group 2) and with composite graft of 80% calcium carbonate and 20% calcium sulfate with calcium sulfate barriertexperimental group 3). Healing responses were histologically observed after 8 weeks and the results were as follows: 1. The alveolar bone formation was $0.59{\pm}0.19mm$ in the control group, $1.80{\pm}0.25mm$ in experimental group 1, $1.61{\pm}0.21mm$ in experimental group 2 and $1.94{\pm}0.11mm$ in experimental group 3 with statistically significant differences between control group and all experimental groups(P<0.05). There were statistically significant differences between experimental group 1 and group 2 (P<0.05). 2. The new cementum formation was $0.48{\pm}0.19mm$ in the control group. $1.72{\pm}0.26mm$ in experimental group 1, $1.43{\pm}0.17mm$ in experimental group 2, $1.89{\pm}0.15mm$ in experimental group 3 with statiscally significant differences between control group and all experimental groups (p<0.05). There were statistically significant differences between experimental group 1 and group 2, and between experimental group 2 and group 3(P<0.05). 3. The length of junctional epithelium was $1.61{\pm}0.20mm$ in the contol group, $0.95{\pm}0.06mm$ in experimental group 1, $1.34{\pm}0.16mm$ in experimental group 2, $1.08{\pm}0.11mm$ in experimental group 3 with statiscally significant differences between control group and experimental group 1. and btween control group and experimental group 3(p<0.05). There were statistically significant differences between experimental group 1 ,and group 2, and between experimental group 2 and group 3(P<0.05). 4. The connective tissue adhesion was $1.67{\pm}O.20mm$ in the control group, $1.33{\pm}0.24mm$ in experimental group 1. $1.23{\pm}0.16mm$ in experimental group 2, $1.08{\pm}0.14mm$ in experimental group 3 with statistically significant differences between control group and all experimental groups(p<0.05). There were nostatistically significant differences between all experimental groups. As a result, epithelial migration was not prevented when calcium sulfate was used alone, but new bone and cementum formation were enhanced. Epithelial migration was prevented and new bone and cementum formation were also enhanced when calcium carbonate was used alone and when both calcium carbonate and calcium sulfate were used.

  • PDF