• Title/Summary/Keyword: bone-related genes

Search Result 118, Processing Time 0.028 seconds

Review on the Correlation between Bone Mass, Skinfold Thickness and the Volume of Urine collagen Peptide in Postmenopausal Women (폐경 후 여성의 골량과 피부두겹두께 및 뇨 콜라겐펩타이드 양의 관련성에 대한 고찰)

  • Park, Mi-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.3 no.2
    • /
    • pp.91-103
    • /
    • 2001
  • The bone is composed of the bone matrix of collagen and hydroxyapatite, the mixture of calcium and phosphours. The bone tissue is considered to the special connective tissue that possesses extracellular matrix made by collagen fiber deposited with mineral complex. In order to maintain bone mass measured by the sum of bone matrix and hydroxyapatite, bone resorption by osteoclast during lifetime and bone remodeling to form bone by osteoblast in its resorption region repeat continuously. The osteoblast has a mesodermic fetal origin like fibroblast for the formation of form tissues. Two cells express identical genes and synthesize the identical collagen type I as the major component of the formation of bone matrix and skin. Therefore, it is considered that the decrease of skinfold thickness and the decrease of bone mass related to the age, the change of two tissues composed of collagen type I is caused by the same genetic mechanism. The decrease of bone mass is caused by the change of the amount and structure of bone matrix by several factors and the amount of minerals deposited on bone matrix. Especially, in case of female, the deficiency of estrogen by menopause makes these changes rapidly increased. The decrease of bone mass and skinfold thickness is due to the decrease of the amount of collagen and its structural change the common component of bone tissue and skin tissue. Therefore, the relationship of the amount of cross-linked peptide N-telopeptide, collagen metabolite which excretes as urine. Based upon the proved results about the significant relationship of bone mass, the amount of bone collagen, the amount of skin collagen and skinfold thickness, the bone mass may be expected through a facile determination of skinfold thickness.

  • PDF

Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis

  • Sul, Ok-Joo;Park, Hyun-Jung;Son, Ho-Jung;Choi, Hye-Seon
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.880-887
    • /
    • 2017
  • We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear $factor-{\kappa}B$ ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.

Simple surface biofunctionalization of biphasic calcium phosphates for improving osteogenic activity and bone tissue regeneration

  • Shim, Kyu-Sik;Kim, Hak-Jun;Kim, Sung Eum;Park, Kyeongsoon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.220-228
    • /
    • 2018
  • In this study, we found a simple surface biofunctionalization of biphasic calcium phosphate (BCP) based on the high affinity between alendronate and the calcium ions of BCP, and the strong interaction between heparin and bone morphogenic protein-2 (BMP-2). The biofunctionalized BCP did not be precipitated well and display a remarkable enhancement of osteogenic activity of human adipose-derived stem cells by showing increased alkaline phosphatase (ALP), calcium deposition and osteogenic-related genes (i.e., Runx-2, ALP, osteocalcin, and osteopontin), and bone regeneration in the calvarial defect model. Therefore, this simple surface technique can be used to easily functionalize various calcium phosphates.

Eleutherococcus sessiliflorus induces differentiation of prechondrogenic ATDC5 Cells (오가피(Eleutherococcus sessiliflorus)의 전연골성 ATDC5 세포의 분화 유도)

  • Shrestha, Saroj Kumar;Song, Jungbin;Lee, Sung Hyun;Lee, Donghun;Kim, Hocheol;Soh, Yunjo
    • The Korea Journal of Herbology
    • /
    • v.37 no.1
    • /
    • pp.51-59
    • /
    • 2022
  • Objectives : The process through which mesenchymal cells condense and differentiate into chondrocytes to form new bone is known as endochondral bone formation. Chondrogenic differentiation and hypertrophy are essential steps in bone formation and are influenced by various factors. The stem bark and root bark of Eleutherococcus sessiliflorus (ES) have been widely used to treat growth retardation and arthritis in traditional Korean Medicine. In this study, we aimed to investigate the possible role of the stem bark of ES in the stimulation of chondrogenic differentiation in clonal murine chondrogenic ATDC5 cells. Methods : In ATDC5 cells treated with ES extract, cell viability and extracellular matrix production were determined using CCK-8 assay and Alcian blue staining, respectively, and alkaline phosphatase activity was measured. We also examined mRNA and protein expression levels of genes related to chondrogenic expression in ATDC5 cells using reverse transcription-polymerase chain reaction and western blot analyses. Results : ES extract increased the accumulation of Alcian blue-stained cartilage nodules and alkaline phosphatase activity in ATDC5 cells. It increased the mRNA expressions of chondrogenic markers including bone sialoprotein (BSP), cartilage collagens, Runt-related transcription factor-2 (RUNX-2), osteocalcin (OCN), β-catenin, and bone morphogenetic protein-2 (BMP-2), as well as the protein expressions of β-catenin, RUNX-2, BMP-2, and alkaline phosphatase (ALP). Conclusion : Taken together, these results suggest that ES extract exhibits a chondromodulating activity and therefore may be a possible agent for the treatment of bone growth disorders.

Dexamethasone-induced muscle atrophy and bone loss in six genetically diverse collaborative cross founder strains demonstrates phenotypic variability by Rg3 treatment

  • Bao Ngoc Nguyen;Soyeon Hong;Sowoon Choi;Choong-Gu Lee;GyHye Yoo;Myungsuk Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.310-322
    • /
    • 2024
  • Background: Osteosarcopenia is a common condition characterized by the loss of both bone and muscle mass, which can lead to an increased risk of fractures and disability in older adults. The study aimed to elucidate the response of various mouse strains to treatment with Rg3, one of the leading ginsenosides, on musculoskeletal traits and immune function, and their correlation. Methods: Six Collaborative Cross (CC) founder strains induced muscle atrophy and bone loss with dexamethasone (15 mg/kg) treatment for 1 month, and half of the mice for each strain were orally administered Rg3 (20 mg/kg). Different responses were observed depending on genetic background and Rg3 treatment. Results: Rg3 significantly increased grip strength, running performance, and expression of muscle and bone health-related genes in a two-way analysis of variance considering the genetic backgrounds and Rg3 treatment. Significant improvements in grip strength, running performance, bone area, and muscle mass, and the increased gene expression were observed in specific strains of PWK/PhJ. For traits related to muscle, bone, and immune functions, significant correlations between traits were confirmed following Rg3 administration compared with control mice. The phenotyping analysis was compiled into a public web resource called Rg3-OsteoSarco. Conclusion: This highlights the complex interplay between genetic determinants, pathogenesis of muscle atrophy and bone loss, and phytochemical bioactivity and the need to move away from single inbred mouse models to improve their translatability to genetically diverse humans. Rg3-OsteoSarco highlights the use of CC founder strains as a valuable tool in the field of personalized nutrition.

A Comparison of Gene Expression Profiles between Primary Human AML Cells and Therapy-related AML Cells

  • Kim, Young-Hun;Kim, Hyung-Soo;Hwang, Jun-Mo;Lee, Jin-Seok;Kim, Seong-Gon;Park, So-Young;Chang, Kyu-Tae;Kim, Kil-Soo;Ryoo, Zae-Young;Lee, Sang-Gyu
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.431-436
    • /
    • 2008
  • To identify genes whose expression correlated with biological features of therapy-related AML (t-AML), we analyzed the expression profiles of de novo AML t(9;11) and t-AML t(9;11) bone marrow samples using previously published SAGE data. Three-hundred twenty-nine transcripts that satisfied statistical (P<0.05) and magnitude-of-change ($\geq$ 4-fold) criteria were identified as differentially expressed between de novo AML t(9;11) and t-AML t(9;11) cells. Of these transcripts, 301 (91%) matched known genes or ESTs and were classified according to functional categories (http://david.abcc.ncifcrf.gov/). The majority of differentially expressed genes in t-AML t(9;11) were involved in the regulation of biological and metabolic processes. Especially prominent among these were genes related to immune and drug responses. These results establish a framework for developing new drugs for the treatment of t-AML.

Molecular mechanisms of hederagenin in bone formation (Hederagenin의 뼈 형성 관련 작용 기전 연구)

  • Hyun-Ju Seo;In-Sook Kwun;Jaehee Kwon;Yejin Sim;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.55 no.6
    • /
    • pp.617-629
    • /
    • 2022
  • Purpose: Osteoporosis is characterized by structural deterioration of the bone tissue because of the loss of osteoblastic activity or the increase in osteoclastic activity, resulting in bone fragility and an increased risk of fractures. Hederagenin (Hed) is a pentacyclic triterpenoid saponin isolated from Dipsaci Radix, the dried root of Dipsacus asper Wall. Dipsaci Radix has been used in Korean herbal medicine to treat bone fractures. In this study, we attempted to demonstrate the potential anti-osteoporotic effect of Hed by examining its effect on osteoblast differentiation in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured in 0, 1, and 10 ㎍/mL Hed for 3 and 7 days. The activity of alkaline phosphatase (ALP), bone nodule formation and level of expression of bone-related genes and proteins were measured in MC3T3-E1 cells exposed to Hed. The western blot test was used to detect the activation of the bone morphogenetic protein-2 (BMP2)/ Suppressor of Mothers against Decapentaplegic (SMAD)1 pathway. Results: Hed significantly increased the proliferation of MC3T3-E1 cells. Intracellular ALP activity was significantly increased in the 1 ㎍/mL Hed-treated group. Hed significantly increased the concentration of calcified nodules. Furthermore, Hed significantly upregulated the expression of genes and proteins associated with osteoblast proliferation and differentiation, such as Runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN), and type I procollagen (ProCOL1). Induction of osteoblast differentiation by Hed was associated with increased BMP2. In addition, Hed induced osteoblast differentiation by increasing the activity of SMAD1/5/8. These results suggest that Hed has the potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells via the modulation of the BMP2/SMAD1 pathway. Conclusion: The results presented in this study indicate that Hed isolated from Dipsaci Radix has the potential to be developed as a healthcare food and functional material possessing anti-osteoporosis effects.

Generation and characterization of 1H8 monoclonal antibody against human bone marrow stromal cells

  • Kang, Hyung Sik;Choi, Inpyo
    • IMMUNE NETWORK
    • /
    • v.1 no.1
    • /
    • pp.14-25
    • /
    • 2001
  • Background: Bone marrow stromal cells (BMSCs) express many cell surface molecules, which regulate the proliferation and differentiation of immune cells within the bone marrow. Methods: To identify cell surface molecules, which can regulate cell proliferation through cell interaction, monoclonal antibodies (MoAbs) against BMSCs were produced. Among them, 1H8 MoAb, which recognized distinctly an 80 kDa protein, abolished myeloma cell proliferation that was induced by co-culturing with BMSCs. Results: IL-6 gene expression was increased when myeloma or stromal cells were treated with 1H8 MoAb. In addition, the expression of IL-6 receptor and CD40 was up-regulated by 1H8 treatment, suggesting that the molecule recognized by 1H8 MoAb is involved in cell proliferation by modulating the expression of cell growth-related genes. Myeloma cells contain high levels of reactive oxygen species (ROS), which are related to gene expression and tumorigenesis. Treatment with 1H8 decreased the intracellular ROS level and increased PAG antioxidant gene concomitantly. Finally, 1H8 induced the tyrosine phosphorylation of several proteins in U266. Conclusion: Taken together, 1H8 MoAb recognized the cell surface molecule and triggered the intracellular signals, which led to modulate gene expression and cell proliferation.

  • PDF

TGF-β Signaling and miRNAs Targeting for BMP7 in the Spleen of Two Necrotic Enteritis-Afflicted Chicken Lines

  • Truong, Anh Duc;Hong, Yeojin;Lee, Janggeun;Lee, Kyungbaek;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.44 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • Transforming growth factor beta ($TGF-{\beta}$) signaling pathways are involved in the regulation of proliferation, differentiation, immunity, survival, and apoptosis of many cells. The aim of this study was to investigate the differential expression of $TGF-{\beta}$-related genes, and their interactions and regulators in the spleen of two genetically disparate chicken lines (Marek's disease resistant line 6.3 and Marek's disease-susceptible line 7.2) induced with necrotic enteritis (NE) by Eimeria maxima and Clostridium perfringens infection. By using high-throughput RNA-sequencing, we investigated 76 $TGF-{\beta}$-related genes that were significantly and differentially expressed in the spleens of the chickens. Approximately 20 $TGF-{\beta}$ pathway genes were further verified by qRT-PCR, and the results were consistent with our RNA sequencing data. All 76 identified genes were analyzed through Gene Ontology and mapped onto the KEGG chicken $TGF-{\beta}$ pathway. Our results demonstrated that several key genes, including $TGF-{\beta}$1-3, bone morphogenetic proteins (BMP)1-7, inhibitor of differentiation (ID) proteins ID1-3, SMAD1-9, and Jun, showed a markedly differential expression between the two chicken lines, relative to their respective controls. We then further predicted 24 known miRNAs that targeted BMP7 mRNA from 139 known miRNAs in the two chicken lines. Among these, six miRNAs were measured by qRT-PCR. In conclusion, this study is the first to analyze most of the genes, interactions, and regulators of the $TGF-{\beta}$ pathway in the innate immune responses of NE afflicted chickens.

GENE-EXPRESSION PROFILING OF TITANIUM-CELL INTERACTION

  • Kim, Chang-Su;Hwang, Jung-Won;Ryu, Jae-Jun;Shin, Sang-Wan;Sohn, Sung-Hwa;Kim, Ki-Nam;Kim, Meyoung-Kon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.393-408
    • /
    • 2005
  • Statement of problem. In the process of bone formation, titanium (Ti) surface roughness is an important factor modulating osteoblastic function. Purpose. This study was carried out to determine the effect of different Ti surface on biologic responses of a human osteoblast-like cell line (MG63). Materials and methods. MG63 cells were cultured on S (smooth), SLA (sandblasted largegrit & acid etching), HA (hydroxyapatite) Ti. The morphology and attachment of the cells were examined by SEM. The cDNAs prepared from total RNAs of MG63 were hybridized to a human cDNA microarray (1,152 elements). Results. The appearances of the surfaces observed with SEM were different in the three types of dental substrates. The surface of SLA and HA were shown to be rougher than S. MG63 cells cultured on SLA and HA were cell-matrix interaction. In the expression of genes involved in osseointegration, upregulated genes were bone morphogenetic protein, Villin, Integrin, Insulin-like growth factors in different surfaces. Downregulated genes were fibroblast growth factor receptor 4, Bcl 2-related protein, collagen, CD4 in different surfaces. Conclusion. The attachment and expression of key osteogenic regulatory genes were enhanced by surface roughness of the dental materials.