• Title/Summary/Keyword: bone substitutes

Search Result 119, Processing Time 0.032 seconds

The Effects of calcium sulfate on healing of 1-wall intrabony defects in dogs (성견의 1면 골내낭에 calcium sulfate 이식이 치주조직 치유에 미치는 영향)

  • Suh, Hye-Yuhn;Choi, Seong-Ho;Moon, Ik-Sang;Cho, Kyoo-Sung;Kim, Chong-Kwan;Chai, Jung-Kiu
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.2
    • /
    • pp.363-377
    • /
    • 1997
  • The main goal of periodontal therapy is the regeneration of periodontal tissue which has been lost due to destructive periodontal diseases. Although conventional forms of periodontal therapy show sound clinical results, the healing results in long junctional epithelium. There have been numerous materials and surgical techniques developed for new attachment and bone regeneration. Bone grafts can be catagorized into: autografts, allografts, xenografts and bone substitutes. Synthetic bone substitute materials include hydroxyapatite, tricalcium phosphate, calcium carbonate, and Plaster of Paris. Calcium sulfate has found its use in dental practice for the last 30 years. Recent animal studies suggest that periodontal regeneration in 3 wall intrabony defect may be enhanced by the presence of calcium sulfate. And it is well known that 2 wall & 1 wall defect have less osteogenic potential, So we need to study the effect of calcium sulfate in 1 wall intrabony defect in dogs. The present study evaluates the effects of calcium sulfate on the epithelial migration, alveolar bone regeneration and cementum formation in intrabony defects of dogs. Four millimeter-deep one-wall intrabony defects were surgically created in the mesial aspect of anterior teeth and mesial & distal aspects of premolars. The test group received calcium sulfate grafts with a flap procedure. The control underwent flap procedure only. Histologic analysis following 8 weeks of healing revealed the following results: 1. The lengths of junctional epithelium were: 2.52mm in the control, and 1.89mm in the test group. There was no statistical significance between the two groups. 2. Alveolar bone formation were: 0.61mm in the control, and 1.88mm in the test group. There was a statistically significant difference between the two groups (p<0.05). 3. Cementum formations were: l.lmm in the control, and 2.46mm in the test group. There was a statistically significant difference between the two groups (p<0.05). 4. The length of CT adhesion were: O.97mm in the control, and 0.17mm in the test group. There was no statistically significant differences between the two groups These results suggest that the use of calcium sulfate in intrabony defects has little effect on junctional epithelium migration, but has significant effects on new bone and new cementum formations.

  • PDF

Socket preservation using deproteinized horse-derived bone mineral

  • Park, Jang-Yeol;Koo, Ki-Tae;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.5
    • /
    • pp.227-231
    • /
    • 2010
  • Purpose: The healing process following tooth extraction apparently results in a pronounced resorption of the alveolar ridge. As a result, the width of alveolar ridge is reduced and severe alveolar bone resorption occurs. The purpose of this experiment is to clinically and histologically evaluate the results of using horse-derived bone mineral for socket preservation. Methods: The study comprised 4 patients who were scheduled for extraction as a consequence of severe chronic periodontitis or apical lesion. The extraction was followed by socket preservation using horse-derived bone minerals. Clinical parameters included buccal-palatal width, mid-buccal crest height, and mid-palatal crest height. A histologic examination was conducted. Results: The surgical sites healed uneventfully. The mean ridge width was $7.75{\pm}2.75\;mm$ at baseline and $7.00{\pm}2.45\;mm$ at 6 months. The ridge width exhibited no significant difference between baseline and 6 months. The mean buccal crest height at baseline was $7.5{\pm}5.20\;mm$, and at 6 months, $3.50{\pm}0.58\;mm$. The mean palatal crest height at baseline was $7.75{\pm}3.10\;mm$, and at 6 months, $5.00{\pm}0.82\;mm$. There were no significant differences between baseline and 6 months regarding buccal and palatal crest heights. The amount of newly formed bone was $9.88{\pm}2.90%$, the amount of graft particles was $42.62{\pm}6.57%$, and the amount of soft tissue was $47.50{\pm}9.28%$. Conclusions: Socket preservation using horse-derived bone mineral can effectively maintain ridge dimensions following tooth extraction and can promote new bone formation through osteoconductive activities.

Activin A/BMP2 Chimera (AB204) Exhibits Better Spinal Bone Fusion Properties than rhBMP2

  • Ryu, Dalsung;Yoon, Byung-Hak;Oh, Chang-Hyun;Kim, Moon-Hang;Kim, Ji-Yong;Yoon, Seung Hwan;Choe, Senyon
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.6
    • /
    • pp.669-679
    • /
    • 2018
  • Objective : To compare the spinal bone fusion properties of activin A/BMP2 chimera (AB204) with recombinant human bone morphogenetic protein (rhBMP2) using a rat posterolateral spinal fusion model. Methods : The study was designed to compare the effects and property at different dosages of AB204 and rhBMP2 on spinal bone fusion. Sixty-one male Sprague-Dawley rats underwent posterolateral lumbar spinal fusion using one of nine treatments during the study, that is, sham; osteon only; $3.0{\mu}g$, $6.0{\mu}g$, or $10.0{\mu}g$ of rhBMP2 with osteon; and $1.0{\mu}g$, $3.0{\mu}g$, $6.0{\mu}g$, or $10.0{\mu}g$ of AB204 with osteon. The effects and property on spinal bone fusion was calculated at 4 and 8 weeks after treatment using the scores of physical palpation, simple radiograph, micro-computed tomography, and immunohistochemistry. Results : Bone fusion scores were significantly higher for $10.0{\mu}g$ AB204 and $10.0{\mu}g$ rhBMP2 than for osteon only or $1.0{\mu}g$ AB204. AB204 exhibited more prolonged osteoblastic activity than rhBMP2. Bone fusion properties of AB204 were similar with the properties of rhBMP2 at doses of 6.0 and $10.0{\mu}g$, but, the properties of AB204 at doses of $3.0{\mu}g$ exhibited better than the properties of rhBMP2 at doses of $3.0{\mu}g$. Conclusion : AB204 chimeras could to be more potent for treating spinal bone fusion than rhBMP2 substitutes with increased osteoblastic activity for over a longer period.

Rabbit maxillary sinus augmentation model with simultaneous implant placement: differential responses to the graft materials

  • Kim, Young-Sung;Kim, Su-Hwan;Kim, Kyoung-Hwa;Jhin, Min-Ju;Kim, Won-Kyung;Lee, Young-Kyoo;Seol, Yang-Jo;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.204-211
    • /
    • 2012
  • Purpose: This study was performed to establish an experimental rabbit model for single-stage maxillary sinus augmentation with simultaneous implant placement. Methods: Twelve mature New Zealand white rabbits were used for the experiments. The rabbit maxillary sinuses were divided into 3 groups according to sinus augmentation materials: blood clot (BC), autogenous bone (AB), and bovine-derived hydroxyapatite (BHA). Small titanium implants were simultaneously placed in the animals during the sinus augmentation procedure. The rabbits were sacrificed 4 and 8 weeks after surgery and were observed histologically. Histomorphometric analyses using image analysis software were also performed to evaluate the parameters related to bone regeneration and implant-bone integration. Results: The BC group showed an evident collapse of the sinus membrane and limited new bone formation around the original sinus floor at 4 and 8 weeks. In the AB group, the sinus membrane was well retained above the implant apex, and new bone formation was significant at both examination periods. The BHA group also showed retention of the elevated sinus membrane above the screw apex and evident new bone formation at both points in time. The total area of the mineral component (TMA) in the area of interest and the bone-to-implant contact did not show any significant differences among all the groups. In the AB group, the TMA had significantly decreased from 4 to 8 weeks. Conclusions: Within the limits of this study, the rabbit sinus model showed satisfactory results in the comparison of different grafting conditions in single-stage sinus floor elevation with simultaneous implant placement. We found that the rabbit model was useful for maxillary sinus augmentation with simultaneous implant placement.

Alveolar Ridge Preservation of Maxillary Molars for Implant Placement Without Sinus Lift Surgery: Case series (상악동 거상술을 동반하지 않는 치조제 보존술: 증례연구(Case series))

  • Cho, Hag-Yeon;Suh, Chang-Wan;Duong, Hieu Pham;Lee, Sung-Jo;Cho, In-Woo;Shin, Hyun-Seung;Koo, Ki-Tae;Fickl, Stefan;Park, Jung-Chul
    • Implantology
    • /
    • v.22 no.4
    • /
    • pp.220-235
    • /
    • 2018
  • Sinus lift procedure is frequently required for the maxillary molar implant placement. Previous studies have demonstrated alveolar ridge preservation (ARP) can maintain the dimensions of ridge height and width. However, there is a lack of studies which evaluated the effect of ARP to avoid sinus lift procedure. Purpose of this study is to describe a method reducing the need of sinus lift surgery by ARP in maxillary molar areas and to assess the feasibility clinically, radiologically and histologically. Ten maxillary molars in ten patients had severe vertical bone resorption with minimal residual bone height. They were considered having the high possibility of the necessity of sinus lift procedure for dental implant after the extraction. After extraction, open healing ARP with deproteinized bovine bone mineral mixed with 10% collagen and resorbable collagen membranes was performed. After sufficient healing, dental implants were placed, and evaluated clinically and radiologically. Histological observation was conducted just before the implantation in one patient. Implants were successfully placed without sinus lift in all ten cases. All the implants were restored with no sign of complications, and patients are now in a close follow-up up to 20 months post-loading. Histological observation showed minimal inflammatory reaction and newly formed bone was substantially noted. The ARP technique has successfully avoided the sinus lift surgeries. It appears that this procedure may improve the simplicity of the clinical process for the clinicians and reduce the discomfort of patients.

THE EFFECTS OF RESORBABLE MEMBRANE IN CONJUNCTION WITH OSSEOUS GRAFTS ON THE PERIODONTAL HEALING IN DOGS (흡수성차단막과 골이식재가 성견 치주질환 치조골재생에 미치는 영향)

  • Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.1
    • /
    • pp.51-63
    • /
    • 1994
  • There has been many attempts to develop a method that can regenerate periodontal tissues that were lost due to periodontal diseasd, but none of them was completely successful. This study was designed to investigate the healing and regeneration of periodontal tissue when bone substitutes such as porous replamineform hydroxyapatite and porous resorbable calcium carbonate were used in combination with oxidized cellulose membrane and collagen absorbable hemostat, compared to a control where only oxidized cellulose membrane or collagen absorbable hemostat were used. Chronic periodontitis was induced on mandibular premolars of and adult dog by placing orthodontic elastic ligatures for 10 weeks. After flap operation, the control group were received oxidized cellulose membrane (control- I )or collagen absorbable hemostat (control- II) only, while one experimental group was given either porous replamineform hydroxyapatite or porous resorbable calcium carbonate in addition to oxidized cellulose membrane (Experimental I-A, I-B), and another experimental group was treated by using either porous replamineform hydroxyapatite or porous resorbable calcium carbonate in addition to collagen absorbable hemostat. (Experimental II-A, II-B) After 56 weeks, healing was histologically analyzed with the following results. 1. Apical migration of junctional epithelium was observed only in areas coronal to the notch for both control and experimental group. 2. Inflammatory cell infiltration was not observed in any groups. 3. Oxidized cellulose membrane and collagen absorbable hemostat were completely resorbed. 4. Newly-formed cementum was observed up to the level where junctional epithelium was located, for both control and experimental groups. 5. Bone formation was limited of the middle portion of the notch in the control group, where as experimental groups showed bone formation up to the level of implant materials coronal to the notch. 6. Minute resorption of apically located portions of implanted materials was observed in experimental group I-B and II-B only.

  • PDF

Preparation of Biodegradable Porous Calcium Metaphosphate Matrix (생분해성 다공질 Calcium Metaphosphate Matrix의 제조)

  • 이중환;김석영
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.449-454
    • /
    • 1998
  • It is well known that new tissue or blood vessel is grown into a porous calcium phosphate ceramics used as a bone graft substitute due to their excellent biocompatibility. In this study, the most chemically stable porous $\beta$-crystalline form in various forms of calcium metaphosphate, Ca(PO$_3$)$_2$is prepared by the controlled thermolysis of monocalcium phosphate, Ca(H$_2$PO$_4$)$_2$.The diameter of cylindrical pores formed during cooling was controlled by a holding time at the melting point of a monocalcium phosphate and by the change of a crystallization temperature, to obtain the most appropriate size (about 200$\mu$m) of pores for the application of bone substitutes and matricuts. It was observed that the increasing holding time at the melting point of monocalcium phosphate results in the decreases of cylindrical pore sizes.

  • PDF

Calcium release and physical properties of modified carbonate apatite cement as pulp capping agent in dental application

  • Zakaria, Myrna Nurlatifah;Cahyanto, Arief;El-Ghannam, Ahmed
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.346-351
    • /
    • 2018
  • Background: Carbonate apatite ($CO_3Ap$) and silica-calcium phosphate composite (SCPC) are bone substitutes with good prospect for dental application. SCPC creates a hydroxyapatite surface layer and stimulate bone cell function while, $CO_3Ap$ induce apatite crystal formation with good adaptation providing good seal between cement and the bone. Together, these materials will add favorable properties as a pulp capping material to stimulate mineral barrier and maintain pulp vitality. The aim of this study is to investigate modification of $CO_3Ap$ cement combined with SCPC, later term as $CO_3Ap-SCPC$ cement (CAS) in means of its chemical (Calcium release) and physical properties (setting time, DTS and pH value). Methods: The study consist of three groups; group 1 (100% calcium hydroxide, group 2 $CO_3Ap$ (60% DCPA: 40% vaterite, and group 3 CAS (60% DCPA: 20% vaterite: 20% SCPC. Distilled water was employed as a solution for group 1, and $0.2mol/L\;Na_3PO_4$ used for group 2 and group 3. Samples were evaluated with respect to important properties for pulp capping application such as pH, setting time, mechanical strength and calcium release evaluation. Results: The fastest setting time was in $CO_3Ap$ cement group without SCPC, while the addition of 20% SCPC slightly increase the pH value but did not improved the cement mechanical strength, however, the mechanical strength of both $CO_3Ap$ groups were significantly higher than calcium hydroxide. All three groups released calcium ions and had alkaline pH. Highest pH level, as well as calcium released level, was in the control group. Conclusion: The CAS cement had good mechanical and acceptable chemical properties for pulp capping application compared to calcium hydroxide as a gold standard. However, improvements and in vivo studies are to be carried out with the further development of this material.

Tissue integration patterns of non-crosslinked and crosslinked collagen membranes: an experimental in vivo study

  • Xiang Jin;Jin-Young Park;Jung-Seok Lee;Ui-Won Jung;Seong-Ho Choi;Jae-Kook Cha
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.3
    • /
    • pp.207-217
    • /
    • 2023
  • Purpose: Non-crosslinked and crosslinked collagen membranes are known to exhibit distinct degradation characteristics, resulting in contrasting orientations of the adjacent tissues and different biological processes. The aim of this study was to conduct a histomorphometric assessment of non-crosslinked and crosslinked collagen membranes regarding neovascularization, tissue integration, tissue encapsulation, and biodegradation. Methods: Guided bone regeneration was performed using either a non-crosslinked (BG) or a crosslinked collagen membrane (CM) in 15 beagle dogs, which were euthanized at 4, 8, and 16 weeks (n=5 each) for histomorphometric analysis. The samples were assessed regarding neovascularization, tissue integration, encapsulation, the remaining membrane area, and pseudoperiosteum formation. The BG and CM groups were compared at different time periods using nonparametric statistical methods. Results: The remaining membrane area of CM was significantly greater than that of BG at 16 weeks; however, there were no significant differences at 4 and 8 weeks. Conversely, the neovascularization score for CM was significantly less than that for BG at 16 weeks. BG exhibited significantly greater tissue integration and encapsulation scores than CM at all time periods, apart from encapsulation at 16 weeks. Pseudoperiosteum formation was observed in the BG group at 16 weeks. Conclusions: Although BG membranes were more rapidly biodegraded than CM membranes, they were gradually replaced by connective tissue with complete integration and maturation of the surrounding tissues to form dense periosteum-like connective tissue. Further studies need to be performed to validate the barrier effect of the pseudoperiosteum.

Effects of Macrophage on Biodegradation of β-tricalcium Phosphate Bone Graft Substitute (대식세포가 β-tricalcium Phosphate 뼈이식제의 생분해에 미치는 영향)

  • Kim, Young-Hee;Jyoti, Anirban;Byun, In-Sun;Oh, Ik-Hyun;Min, Young-Ki;Yang, Hun-Mo;Lee, Byong-Taek;Song, Ho-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.618-624
    • /
    • 2008
  • Various calcium phosphate bioceramics are distinguished by their excellent biocompatibility and osteoconductivity. Especially, the exceptional biodegradability of $\beta$-TCP makes it a bone graft substitute of choice in many clinical applications. The activation of osteoclasts, differentiated from macrophage precursor cells, trigger a cell-mediated resorption mechanism that renders $\beta$-TCP biodegradable. Based on this evidence, we studied the biodegradation process of granular-type $\beta$-TCP bone graft substitute through in vitro and in vivo studies. Raw 264.7 cells treated with RANKL and M-CSF differentiated into osteoclasts with macrophage-like properties, as observed with TRAP stain. These osteoclasts were cultured with $\beta$-TCP nano powders synthesized by microwave-assisted process. We confirmed the phagocytosis of osteoclasts by observing $\beta$-TCP particles in their phagosomes via electron microscopy. No damage to the osteoclasts during phagocytosis was observed, nor did the $\beta$-TCP powders show any sign of cytotoxicity. We also observed the histological changes in subcutaneous tissues of rats implanted with granule-type $\beta$-TCP synthesized by fibrous monolithic process. The $\beta$-TCP bone graft substitute was well surrounded with fibrous tissue, and 4 months after implantation, 60% of its mass had been biodegraded. Also, histological findings via H&E stain showed a higher level of infiltration of lymphocytes as well as macrophages around the granule-type $\beta$-TCP. From the results, we have concluded that macrophages play an important role in the biodegradation process of $\beta$-TCP bone graft substitutes.