• 제목/요약/키워드: bone strength

검색결과 499건 처리시간 0.02초

대퇴골(Femur)고정용 골 금속판 제작 및 강도 평가 (Practicability Strength Assessment of a Bone Metallic Plate at the Femur Fixation)

  • 김정래;안창식;서병도
    • 대한인간공학회지
    • /
    • 제27권2호
    • /
    • pp.83-89
    • /
    • 2008
  • Study was developed the metallic plate for fixation in the femur fracture and plates has a firm place in fracture treatment. This plates can be stabilized for fracture fixation as well as biological and dynamical device. The device's designation and sizing has a optimization with bending structural stiffness and strength, known meaning that is reliable regardless of the plate by the short type and long type. The bending strength of the curved metallic long plate has to evaluate a 11,000N and the bending strength of the curved metallic short plate has to evaluate a 6,525N. This see the X-ray image of bending angle made certain of 15$^{\circ}$ at number 2 and same 82.87$^{\circ}$ at number 2, 4, 5, 7, 8, 9, 10 by outside angle, and confirmed 25.26$^{\circ}$ at number 3, 3.68$^{\circ}$ at number 6, 15.64$^{\circ}$ at number 9 by inside angle. This study shows that keep up the metallic plate for fixation in the femur fracture through X-ray Image and the device can be used to support Revision case of Hip Implant and to use a case of Hip screw compression of Hip Neck Fracture. Short plate have a wrapping of femur and long plate have to preserve a pole of femur.

PCL Infiltration into a BCP Scaffold Strut to Improve the Mechanical Strength while Retaining Other Properties

  • Kim, Min-Sung;Kim, Yang-Hee;Park, Ih-Ho;Min, Young-Ki;Seo, Hyung-Seok;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제20권6호
    • /
    • pp.331-337
    • /
    • 2010
  • A highly porous Biphasic Calcium Phosphate (BCP) scaffold was fabricated by the sponge replica method with a microwave sintering technique. The BCP scaffold had interconnected pores ranging from $80\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To enhance the mechanical properties of the porous scaffold, infiltration of polycaprolactone (PCL) was employed. The microstructure of the BCP scaffold was optimized using various volume percentages of polymethylmethacrylate (PMMA) for the infiltration process. PCL successfully infiltrated into the hollow space of the strut formed after the removal of the polymer sponge throughout the degassing and high pressure steps. The microstructure and material properties of the BCP scaffold (i.e., pore size, morphology of infiltrated and coated PCL, compressive strength, and porosity) were evaluated. When a 30 vol% of PMMA was used, the PCL-BCP scaffold showed the highest compressive strength. The compressive strength values of the BCP and PCL-BCP scaffolds were approximately 1.3 and 2MPa, respectively. After the PCL infiltration process, the porosity of the PCL-BCP scaffold decreased slightly to 86%, whereas that of the BCP scaffold was 86%. The number of pores in the $10\;{\mu}m$ to $20\;{\mu}m$ rage, which represent the pore channel inside of the strut, significantly decreased. The in-vitro study confirmed that the PCL-infiltrated BCP scaffold showed comparable cell viability without any cytotoxic behavior.

제7기 국민건강영양조사 자료를 활용한 한국 성인의 악력 분포 및 영향요인 분석 (An Analysis on Distribution of Handgrip Strength and Associated Factors in Korean Adults)

  • 정정원;박소영;김현아
    • 한국임상약학회지
    • /
    • 제31권3호
    • /
    • pp.231-236
    • /
    • 2021
  • Background: Sarcopenia is a skeletal muscle disorder that involves the loss of muscle mass and function. Handgrip strength (HGS) is the most commonly used tool to assess muscle strength to diagnose sarcopenia. HGS is also associated with various diseases and health outcomes. Thus, we aimed this study to examine the HGS status in Korean adults and relevant factors of HGS. Methods: Data was obtained from the 7th Korea National Health and Nutrition Examination Survey (KNHANES), a population-based nationwide survey. The estimated mean value of HGS was calculated in each age group. The mean HGS in men and women aged over 40 was compared according to the household income level, lifestyle factors, and comorbidities. Results: A total of 16,708 participants were included in this study. The mean HGS showed a maximum value in the 30s for both men and women, and then tended to decrease with increasing age. When analyzed for people aged 40 or older, the mean HGS was significantly higher in the current or past smoker, drinker, and aerobic exercise groups in both men and women. The mean HGS was lower in the group with comorbidities such as hypertension, dyslipidemia, type 2 diabetes, and bone diseases. Conclusion: Our study found that the mean HGS was significantly different between those with and without underlying chronic diseases. In groups with relevant comorbidities, close monitoring for the development of sarcopenia and taking preventive measures such as exercise and nutritional support may be recommended.

골다공증이 있는 상완골 골두의 파일럿 홀 (Pilot Hole)과 흡수성 나사못의 크기에 따른 토크 (Torque)와 뽑힘 강도 (Pullout Strength) 간의 관계 (Relationship Between Insertion Torque, and Pullout Strength Depending on the Size of the Pilot Hole and Biodegradable Suture Anchor in Osteoporotic Humeral Head)

  • 천용민;이영한;김성환;박유정;김성재
    • Clinics in Shoulder and Elbow
    • /
    • 제15권1호
    • /
    • pp.8-15
    • /
    • 2012
  • 목적: 본 연구의 목적은 골다공증이 있는 회전근개 파열 환자에서 상완골 골두에 표준 크기 (5.0 mm) 보다 작은 송곳 (awl) (3.7 mm 나사못용)을 사용해서 5.0 mm 나사못을 삽입하는 것이 표준 크기의 송곳과 6.5 mm 나사못을 삽입하는 것에 비해 토크 (torque)나 뽑힘 강도(pullout strength)에서 차이가 있는지를 알아보고자 하였다. 대상 및 방법: 방부 처리된 12명, 24개의 짝지은 사체 견관절을 A군와 B군, 두 군으로 나누어 관심 부위의 골밀도를 측정한 후에 A군에서는 5.0 mm 나사못 삽입을 위해 3.7 mm 송곳 (awl)을 이용하는 경우를 A1군, 5.0 mm 나사못 삽입을 위해 5.0 mm 송곳을 이용하는 경우를 A2군으로 하였다. B군에서는 5.0 mm 송곳을 이용하여 5.0 mm 나사못을 삽입하는 경우를 B1군, 6.5 mm 나사못을 삽입하는 경우를 B2군으로 하여 나사못 삽입 시의 토크와 뽑힘 강도를 측정하였다. 결과: 골밀도는 A군과 B군 간이나 군내에 차이가 없었다. 토크는 A1군이 A2군보다 각각 20.6 $cN{\cdot}m$와 13.2 $cN{\cdot}m$로 유의한 차이를 보였고 (p<0.001), B1군과 B2군에서도 각각 12.1 $cN{\cdot}m$와 20.8 $cN{\cdot}m$로 유의한 차이를 보였다 (p<0.001). 그러나 증가된 정도의 차이는 유의하지 않았다. A1군과 A2군의 뽑힘 강도는 각각 204.2 N과 152.9 N으로 유의한 차이를 보였고 (p<0.001), B1군과 B2군에서도 149.5 N과 210.9 N으로 유의한 차이를 보였다 (p<0.001). 그러나 증가된 정도의 차이는 유의하지 않았다. 결론: 송곳 크기보다 큰 치수의 나사못을 사용하면, 같은 크기의 송곳과 나사못을 사용하는 경우 토크나 뽑힘 강도가 유의하게 증가하였다. 그러나 증가된 정도는 큰 송곳과 작은 송곳 간에 차이가 유의하지 않았다. 따라서 대결절의 footprint 내에 나사못과 나사못 사이의 거리가 충분하지 않은 경우에 5.0 mm 송곳을 이용하여 6.5 mm 나사못을 삽입하는 대신 3.7 mm 송곳을 이용하여 5.0 mm 나사못을 삽입해도 증가되는 뽑힘 강도는 차이가 없을 것으로 생각한다.

Fabrication and Characterization of the Ti-TCP Composite Biomaterials by Spark Plasma Sintering

  • Mondal, Dibakar;Park, Hyun-Kuk;Oh, Ik-Hyun;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.53.2-53.2
    • /
    • 2011
  • Ti metal has superior mechanical properties along with biocompatibility, but it still has the problem of bio-inertness thus forming weaker bond in bone/implant interface and long term clinical performance as orthopaedic and dental devices are restricted for stress shielding effect. On the other hand, despite the excellent biodegradable behavior as being an integral constituent of the natural bone, the mechanical properties of ${\beta}$-tricalcium phosphate $(Ca_3(PO_4)_2;\;{\beta}-TCP)$ ceramics are not reliable enough for post operative load bearing application in human hard tissue defect site. One reasonable approach would be to mediate the features of the two by making a composite. In this study, ${\beta}$-TCP/Ti ceramic-metal composites were fabricated by spark plasma sintering in inert atmosphere to inhibit the formation of $TiO_2$. Composites of 30 vol%, 50 vol% and 70 vol% ${\beta}$-TCP with Ti were fabricated. Detailed microstructural and phase characteristics were investigated by FE-SEM, EDS and XRD. Material properties like relative density, hardness, compressive strength, elastic modulus etc. were characterized. Cell viability and biocompatibility were investigated using the MTT assay and by examining cell proliferation behavior.

  • PDF

아세트산 처리 갑오징어(Sepia esculenta)갑을 이용한 어묵의 품질 개선 (Quality Improvement of Heat-Induced Surimi Gel using Calcium Powder of Cuttle, Sepia esculents Bone Treated with Acetic Acid)

  • 김진수;조문래;허민수
    • 한국수산과학회지
    • /
    • 제36권3호
    • /
    • pp.198-203
    • /
    • 2003
  • Heat-induced surimi gels were prepared using various concentration of ATC as a additives and calcium agent. Regardless of various concentration of ATC, there were no difference the moisture $(80.4-81.2\%)\;and\;crude\;ash\;(1.4-1.\5%)$ contents. The pH of heat-induced surimi gels were decreased 7.16 to 7.04 depend on increasing ATC concentration. The whiteness, breaking force and gel strength of $0.09\%$surimi gel were improved significantly difference (p<0.05). Sensory evaluation on texture and whiteness were also similar to determination by color and texture meters. In mineral content of heat-induced surimi gel calcium content was increased 26 to 54 mg/100g depend on increasing ATC concentration, while phosphorus content was not change. The optimal concentration of ATC for preparation of high quality heat-induced surimi gel was $0.09\%$. The shelf-life of heat-induced surimi gel did not extend by addition of $0.09\%$ ATC.

비타민 C가 in vitro 계에서 콜라겐 미숙가교 생성에 미치는 영향 (The Effect of L-Ascorbic Acid on the Formation of Immature Crosslink in Bone Collagen in vitro)

  • 김미향
    • 한국식품영양과학회지
    • /
    • 제28권6호
    • /
    • pp.1332-1338
    • /
    • 1999
  • Intermolecular collagen cross links stabilize collagen fibrils and are necessary for normal tensile strength in collagen fibrils. Once the fibrils are aligned, hydroxyllysine, hydroxylysine derived aldehyde modified enzymatically, reacts with hydroxylysine to form the dehydrodihydroxylysinonorleucine (DHLNL), an immature crosslink. Pyridinoline, one of matured cross links is presumably formed nonenzymatically through condensation of DHLNL and hydroxylysine residue. It is widely distributed in hard connective tissues such as cartilage, bone and tendon. L ascorbic acid(AsA) is well known to be required for the enzymatic hydroxylation of proline and lysine in collagen fibrils. The purpose of this study is to clarify the role of AsA on the biosynthesis of DHLNL in vitro. We examined the effect of AsA on the formation of hydroxylysine and DHLNL in collagen. Pyridinoline and DHLNL were measured as a function of time. The contents of DHLNL was increased, reached maximum within 2 hr and was held until 24 hr, then it decreased slowly. On the contrary, pyridinoline increased gradually after 24 hr and continued to increase for 2 weeks. Moreover, the contents of DHLNL remarkably decreased at 60 min after incubation, the contents of DHLNL was decreased by addition of AsA or dehydroascorbic acid(DHA). These results suggest that the supplementation of AsA causes decrease in DHLNL formation and pyridinoline formed by nonenzymatic reaction of DHLNL.

  • PDF

파이버 레이저를 이용한 치과용 임플란트 표면처리에 관한 연구 (A Study on the Surface Treatment of Dental Implant using a Fiber Laser)

  • 신호준;양윤석;황찬연;유영태
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.915-928
    • /
    • 2011
  • Titanium for dental implant application has the superior properties of biocompatibility, specific strength, and corrosion resistance. However, it is extremely difficult to find a suitable surface treatment method for sufficient osseointegration with biological tissue/bone cell and implant surface. Surface treatment technology using laser has been researched as the way to increase surface area of implant. In this study, to develop the surface treatment process with improved adhesion between implant and bone cell at the same time for superior biocompatibility, pulsed laser beam was overlapped continuously for scribed surface morphology and determination of friction coefficient. As the results, surface area and friction coefficient was increased over 2 times by the comparison with sand blasting, which is used for the conventional method. In this time, the optimal condition for laser beam power and beam irradiation speed was 13 watt and 50 mm/sec, respectively.

In vitro and in vivo Application of PLGA Nanofiber for Artificial Blood Vessel

  • Kim, Mi-Jin;Kim, Ji-Heung;Yi, Gi-Jong;Lim, Sang-Hyun;Hong, You-Sun;Chung, Dong-June
    • Macromolecular Research
    • /
    • 제16권4호
    • /
    • pp.345-352
    • /
    • 2008
  • Poly(lactic-co-glycolic acid) (PLGA) tubes (5 mm in diameter) were fabricated using an electro spinning method and used as a scaffold for artificial blood vessels through the hybridization of smooth muscle cells (SMCs) and endothelial cells (ECs) differentiated from canine bone marrow under previously reported conditions. The potential clinical applications of these artificial blood vessels were investigated using a canine model. From the results, the tubular-type PLGA scaffolds for artificial blood vessels showed good mechanical strength, and the dual-layered blood vessels showed acceptable hybridization behavior with ECs and SMCs. The artificial blood vessels were implanted and substituted for an artery in an adult dog over a 3-week period. The hybridized blood vessels showed neointimal formation with good patency. However, the control vessel (unhybridized vessel) was occluded during the early stages of implantation. These results suggest a shortcut for the development of small diameter, tubular-type, nanofiber blood vessels using a biodegradable material (PLGA).

생체유사환경에서 성장된 아파타이트 층의 나노구조 연구 (Nanostructural Study of Apatite Film Biomimetically Grown in SBF (Simulated Body Fluid))

  • 김정;이갑호;홍순익
    • 한국재료학회지
    • /
    • 제15권11호
    • /
    • pp.690-696
    • /
    • 2005
  • The ultrastructure ore of a nanostructured apatite film nucleated from solution was studied to gain insights into that of bone minerals which is the most important constituent to sustain the strength of bones. Needle-shaped apatite crystal plates with a bimodal size distribution $(\~100\;to\;\~1000 nm)$ were randomly distributed and they were found to grow parallel to the c-axis ([002]), driven by the reduction of surface energy. Between these randomly distributed needle-shaped apatite crystals which are parallel to the film, apatite crystals (20-40nm) with the normal of the grains quasi-perpendicular to the c-axis were observed. These observations suggest that the apatite film is the interwoven structure of apatite crystals with the c-axis parallel and quasi-perpendicular to the fan. In some regions, amorphous calcium phosphate, which is a precursor of apatite, was also observed. In the amorphous phase, small crystalline particle with the size of 2-3 nm were observed. These particles were quite similar, in size and shape, to those observed in the femoral trabecular bone, suggesting the nucleation of apatites by a biomimetic process in vitro is similar to that in vivo.