• 제목/요약/키워드: bone strength

검색결과 499건 처리시간 0.03초

참치 뼈를 이용한 Hydroxyapatite 세라믹 복합체의 합성 및 생체 친화성(제1보)-건식법으로 분쇄한 Hydroxyapatite 및 Wollastonite가 첨가된 소결체의 특성- (Synthesis and Biocompatibility of the Hydroxyapatite Ceramic Composites from Tuna Bone(I) - The Sintering Properties of Hydroxyapatite and Hydroxyapatite- Containing Wollastonite Crushed with Dry Milling Process -)

  • 김세권;이창국;변희국;전유진;이응호;최진삼
    • 공업화학
    • /
    • 제8권6호
    • /
    • pp.994-999
    • /
    • 1997
  • 참치 뼈로부터 추출한 hydroxyapatite [$Ca_{10}(PO_4)_6(OH)_2$] 와 여기에 소결성 증진을 위해 wollastonite($CaSiO_3$)를 첨가하여 고상반응시킨 세라믹 소결체의 결정상, 미세구조와 꺽임강도(bending strength) 등의 특성을 고찰하였다. 참치 뼈에서 추출한 hydroxyapatite자체의 소결성은 매우 취약하였는데, 이는 건식법의 입자분쇄 한계 때문으로 보인다. Hydroxyapatite에 wollastonite가 첨가된 경우 소결온도가 $1250^{\circ}C$이하에서는 hydroxyapatite와 pseudowollastonite(${\alpha}-CaSiO_3$)가 혼재된 결정상을 보였으나, 온도가 증가할수록 hydroxyapatite의 분해에 따른 whitlockite [$Ca_3(PO_4)_2$] 상이 관찰되었다. 소결온도가 $1250^{\circ}C$이하에서는 미세한 입자들과 많은 기공들이 분포하였으며, 소결온도가 증가할수록 입자의 크기는 증가하여 소결이 상당히 진행된 미세구조를 나타내었다. Wollastonite가 첨가된 소결시편의 평균 꺽임강도는 18MPa로서 해면골(cancellous bone)의 최대 꺽임강도인 20MPs에 근접한 것으로 나타났다.

  • PDF

Efficiency and accuracy of artificial intelligence in the radiographic detection of periodontal bone loss: A systematic review

  • Asmhan Tariq;Fatmah Bin Nakhi;Fatema Salah;Gabass Eltayeb;Ghada Jassem Abdulla;Noor Najim;Salma Ahmed Khedr;Sara Elkerdasy;Natheer Al-Rawi;Sausan Alkawas;Marwan Mohammed;Shishir Ram Shetty
    • Imaging Science in Dentistry
    • /
    • 제53권3호
    • /
    • pp.193-198
    • /
    • 2023
  • Purpose: Artificial intelligence (AI) is poised to play a major role in medical diagnostics. Periodontal disease is one of the most common oral diseases. The early diagnosis of periodontal disease is essential for effective treatment and a favorable prognosis. This study aimed to assess the effectiveness of AI in diagnosing periodontal bone loss through radiographic analysis. Materials and Methods: A literature search involving 5 databases (PubMed, ScienceDirect, Scopus, Health and Medical Collection, Dentistry and Oral Sciences) was carried out. A specific combination of keywords was used to obtain the articles. The PRISMA guidelines were used to filter eligible articles. The study design, sample size, type of AI software, and the results of each eligible study were analyzed. The CASP diagnostic study checklist was used to evaluate the evidence strength score. Results: Seven articles were eligible for review according to the PRISMA guidelines. Out of the 7 eligible studies, 4 had strong CASP evidence strength scores (7-8/9). The remaining studies had intermediate CASP evidence strength scores (3.5-6.5/9). The highest area under the curve among the reported studies was 94%, the highest F1 score was 91%, and the highest specificity and sensitivity were 98.1% and 94%, respectively. Conclusion: AI-based detection of periodontal bone loss using radiographs is an efficient method. However, more clinical studies need to be conducted before this method is introduced into routine dental practice.

Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles

  • Nam, Ki Young
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권3호
    • /
    • pp.217-223
    • /
    • 2017
  • PURPOSE. This study investigated the effects of silver nanoparticle (SN) loading into hydraulic calcium silicate-based Portland cement on its mechanical, antibacterial behavior and biocompatibility as a novel dental bone substitute. MATERIALS AND METHODS. Chemically reduced colloidal SN were combined with Portland cement (PC) by the concentrations of 0 (control), 1.0, 3.0, and 5.0 wt%. The physico-mechanical properties of silver-Portland cement nanocomposites (SPNC) were investigated through X-ray diffraction (XRD), setting time, compressive strength, solubility, and silver ion elution. Antimicrobial properties of SPNC were tested by agar diffusion against Streptococcus mutans and Streptococcus sobrinus. Cytotoxic evaluation for human gingival fibroblast (HGF) was performed by MTS assay. RESULTS. XRD certified that SN was successfully impregnated in PC. SPNC at above 3.0 wt% significantly reduced both initial and final setting times compared to control PC. No statistical differences of the compressive strength values were detected after SN loadings, and solubility rates of SPNC were below 3.0%, which are acceptable by ADA guidelines. Ag ion elutions from SPNC were confirmed with dose-dependence on the concentrations of SN added. SPNC of 5.0 wt% inhibited the growth of Streptococci, whereas no antimicrobial activity was shown in control PC. SPNC revealed no cytotoxic effects to HGF following ISO 10993 (cell viability > 70%). CONCLUSION. Addition of SN promoted the antibacterial activity and favored the bio-mechanical properties of PC; thus, SPNC could be a candidate for the futuristic dental biomaterial. For clinical warrant, further studies including the inhibitory mechanism, in vivo and long-term researches are still required.

Dental Implant 금속재료의 성분차이에 따른 세포독성에 관한 연구 (A STUDY ON CYTOTOXICITY OF THE NEW TITANIUM ALLOYS FOR DENTAL IMPLANT MATERIAL)

  • 김태인;한준현;이인석;이규환;신명철;최부병
    • 대한치과보철학회지
    • /
    • 제34권4호
    • /
    • pp.675-686
    • /
    • 1996
  • Today, dental implants are an acceptable alternative, capable of providing bone-anchored fixed prostheses for improved quality of life and self esteem for many patients. Research advances in dental implantology have led to the development of several different types of materials, and it is anticipated that continued research will likewise lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which possibly limits its ability to resist the functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance, bone biocompatibility etc. The carefully selected Zr, Nb, Ta, Pd, In constituents could improve mechanical strength, corrosion resistance, and biocompatibility compared to that of currently used implant metals. On the basis of the totality of the data from our study, it can be concluded that new titanium alloys containing Zr, Nb, Ta, Pd, In are able to provide improved mechanical properties, corrosion resistance and biocompatibility to warrant further investigation of it's potential as new biomaterials for dental implants.

  • PDF

공극률에 따른 다공성 타이타늄 임플란트의 기계적 특성 (Mechanical properties of the porous Ti implants according to porosity)

  • 김영훈
    • 대한치과기공학회지
    • /
    • 제37권2호
    • /
    • pp.57-62
    • /
    • 2015
  • Purpose: This study was performed to investigate mechanical properties of the porous Ti implants according to porosity. Porous Ti implant will be had properties similar to human bone such as microstructure and mechanical properties. Methods: Porous Ti implant samples were fabricated by sintering of spherical Ti powders(below $25{\mu}m$, $25{\sim}32{\mu}m$, $32{\sim}38{\mu}m$, and $38{\sim}45{\mu}m$) in a high vacuum furnace. Specimen's diameter and height were 4mm and 40 mm. Surface and sectional images of porous Ti implants were evaluated by scanning electron microscope(SEM). Porosity and average pore size were evaluated by mercury porosimeter. Young's modulus and tensile strength were evaluated by universal testing machine(UTM). Results: Porosity of Implant was increased according to larger particle size of the powder. Boundary portions of particles are sintered fully and others portions were formed pore. Young's modulus was decreased by formed porous structure. Tensile strength was decreased according to larger the particle size of the powder, but higher than human bone. Conclusion: If prepared by adjust the porosity of the porous Ti implant will be able to resolve the stress shielding phenomenon.

Study on Mechanical and Thermal Properties of Tio2/Epoxy Resin Nanocomposites

  • Kim, Bu-Ahn;Moon, Chang-Kwon
    • International Journal of Ocean System Engineering
    • /
    • 제3권2호
    • /
    • pp.102-110
    • /
    • 2013
  • The purpose of this study was to improve the properties of epoxy resin using titanium oxide nanoparticles. The effects of particle weight fraction, dispersion agent, and curing agents with different molecular weights on the thermal and mechanical properties of titanium-oxide-reinforced epoxy resin were investigated. In addition, the effect of the particle dispersion condition on the mechanical properties of nanocomposites was studied. As a result, it was found that the glass transition temperature of film-shaped nanocomposites decreased with an in-crease in the nanoparticle content. Because nanoparticles interrupted the cross linkage between the epoxy resin and the amine curing agent, the cross-link density of the epoxy became lower and led to a decrease in $T_g$ in the nanocompo-sites. The tensile strength and modulus in film-shaped nanocomposites also increased with the particles content. But in the case of dog-bone-shaped nanocomposites, the values were not similar to the trend for the film-shaped nanocompo-sites. This was probably a result of the different nanoparticles dispersions in the epoxy resins resulting from the respective-thicknesses of the film and dog-bone-shaped samples.

Monocortical Osteosynthesis 이론에 따른 하악골 우각부 골절 수술시 Titanium miniplate와 Biodegradable miniplate의 임상적, 방사선학적 비교 연구 (CLINICAL AND RADIOLOGICAL COMPARISON BETWEEN TITANIUM AND BIODEGRADABLE MINIPLATE MONOCORTICAL OSTEOSYNTHESIS IN MANDIBULAR ANGLE FRACTURES)

  • 최은주;남웅;정영수;김기호;김형준
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권3호
    • /
    • pp.222-225
    • /
    • 2006
  • The treatment objective of mandibular fracture is a return to normal function. According to Champy, a rigid fixation of mandibular angle fracture is performed by using 4 or 6 holes titanium miniplates on the external oblique ridge of mandible. However, the limitations of metal plate such as hypersensitivity, interference with the cranio-facial growth of growing child, secondary bone resorption around the plate, foreign body reaction, declination of primary callus formation, and bone atrophy due to the lack of normal stress reaction of the bone have been reported. Recently, biodegradable miniplate has been introduced and used as an alternative to the metal plate despite its lower strength than that of the titanium plate and the side effect caused by the resorption in the body. In this study, 61 patients diagnosed as mandibular angle fracture and treated from Jan. 1998 to Dec. 2004 in our department have been reviewed. Metal plate fixation was used in 50 patients and biodegradable plate fixation in 11 patients on the external oblique ridge around the fractured mandibular angle according to the principle of monocortical osteosynthesis by Champy. We compared the incidence of side effects and the degree of bony union at the mandibular inferior border in two different fixation methods. In conclusion, we have found that one miniplate regardless of matter could provide enough strength to grasp bony fragments of the tension site and compress the inferior border of mandible without any complications.

Which Index for Muscle Mass Represents an Aging Process?

  • Kim, Hyung-Kook;Lee, You Jin;Lee, Young-Kyun;Kim, Hongji;Koo, Kyung-Hoi
    • 대한골대사학회지
    • /
    • 제25권4호
    • /
    • pp.219-226
    • /
    • 2018
  • Background: Although studies and interest in sarcopenia have increased, it is still a matter of debate which muscle mass index better represents the aging process. We compared 3 indices for muscle mass (appendicular skeletal muscle mass [ASM]/weight, $ASM/height^2$, and the body mass index [BMI]-adjusted muscle mass index [ASM/BMI]) to determine which better reflected the aging process in terms of the decline in bone mineral density (BMD), visual acuity (VA), hearing power, renal function, pulmonary function, and handgrip strength. Methods: We performed a retrospective cross-sectional study using the Korea National Health and Nutrition Examination Survey in the Korean population. Between 2008 and 2011, a total of 14,415 men and 17,971 women aged 10 years or older participated in the study. We plotted the changes in the 3 indices of muscle mass and compared these with changes in BMD, VA, hearing power, renal function, pulmonary function, and handgrip strength according to each age group. Results: The ASM/BMI showed similar changes in terms of surrogate markers of the aging process, while the ASM/weight and $ASM/height^2$ showed no correlation. Conclusions: Among muscle indices for sarcopenia, only the ASM/BMI represented the aging process.

양생온도에 따른 다공성 경량골재를 활용한 샌드위치 패널심재의 강도 특성 (Strength Properties of Sandwich Panel core using Cellular lightweight Aggregate according to Curing Temperature)

  • 노정식;김대규;도정윤;문경주;소양섭
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.35-38
    • /
    • 2003
  • The purpose of this study is to investigate the manufacture of light weight concrete panel using the artificial light-weight aggregate as a part of the substitution of foamed styrene and polyurethane because of narrow allocable temperature Bone in use. The experimental parameter of this study is 40, 60 and 8$0^{\circ}C$ of curing temperature at 100% relative humidity and the type of admixture such as cement, 6mm glass fiber and St/BA emulsion. Testing item is compressive and flexural strength and strength of specimen cured at standard condition is compared to that of specimen cured at 40, 60 and 8$0^{\circ}C$ of curing temperature at 100% relative humidity. As a result or this, it was revealed that the maximum or strength is developed in 6$0^{\circ}C$ or cure temperature at 100% relative humidity in case of the most of the specimen. Specimens modified by St/BA emulsion show the highest development of strength dependent on the curing tmeperature. So, it seems to be effective that evaporation curing method shoud be considered to curing the specimen as the panel core.

  • PDF

골 대사 및 phytochemicals의 estrogen 효과 (Bone Metabolism and Estrogenic Effect of Phytochemicals)

  • 김보경;김미향
    • 생명과학회지
    • /
    • 제28권7호
    • /
    • pp.874-883
    • /
    • 2018
  • 전 세계적인 인구 고령화 현상으로 인하여 골다공증은 주요한 질병으로 대두되고 있다. 골다공증은 뼈의 질량과 강도가 감소하여 골절의 위험이 증가하는 질환으로 조골세포의 골 형성 및 파골세포의 골 흡수의 불균형으로 인해 발생하는 질환이다. 조골세포에 의한 골 형성은 BMP, RUNX2, $Wnt/{\beta}-catenin$ 경로 등을 통하여 활성화 되며, 파골세포에 의한 골 흡수는 RANKL과 RANK의 결합에 의해서 시작된다. 폐경기 여성은 호르몬 불균형에 의해 여러 질병의 위험에 처해 있으며, 폐경기 여성의 약 30%에서 관찰되는 골다공증은 폐경기 여성에게서 발생되는 가장 흔한 대사성 질환이기도 하다. Estrogen이 부족할 때 파골세포의 골 흡수가 촉진되므로, 특히 폐경 여성에서 골다공증의 발생위험이 증가하게 된다. 호르몬대체요법은 폐경기 증후군의 증상을 경감시키거나 치료하기 위해 널리 사용되어 왔으나, 호르몬 치료를 장기간 실시할 경우 유방암, 난소암, 자궁암 등의 부작용 위험성이 매우 높은 것으로 알려져 있다. 따라서 최근 들어 여러 부작용을 보완하기 위해 폐경기 증후군 증상에 대처할 수 있는 estrogen과 유사한 활성을 지닌 식물성 estrogen인 phytoestrogen에 대한 연구가 활발히 진행되고 있다. 따라서, 본 총설에서는 조골세포 및 파골세포의 분화 기전에 대한 선행연구를 알아보고 골 대사에서의 estrogen의 역할 및 phytoestrogen과 관련한 연구들에 대해서도 살펴보았다.